Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction

Sub‐10 nm CoFe2O4 nanoparticles with different sizes and various compositions obtained by (partial) substitution of Co with Ni cations have been synthesized by using a one‐pot method from organic solutions by the decomposition of metal acetylacetonates in the presence of oleylamine. The electrocatal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2017-08, Vol.9 (15), p.2988-2995
Hauptverfasser: Chakrapani, Kalapu, Bendt, Georg, Hajiyani, Hamidreza, Schwarzrock, Ingo, Lunkenbein, Thomas, Salamon, Soma, Landers, Joachim, Wende, Heiko, Schlögl, Robert, Pentcheva, Rossitza, Behrens, Malte, Schulz, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2995
container_issue 15
container_start_page 2988
container_title ChemCatChem
container_volume 9
creator Chakrapani, Kalapu
Bendt, Georg
Hajiyani, Hamidreza
Schwarzrock, Ingo
Lunkenbein, Thomas
Salamon, Soma
Landers, Joachim
Wende, Heiko
Schlögl, Robert
Pentcheva, Rossitza
Behrens, Malte
Schulz, Stephan
description Sub‐10 nm CoFe2O4 nanoparticles with different sizes and various compositions obtained by (partial) substitution of Co with Ni cations have been synthesized by using a one‐pot method from organic solutions by the decomposition of metal acetylacetonates in the presence of oleylamine. The electrocatalytic activity of CoFe2O4 towards the oxygen evolution reaction (OER) is clearly enhanced with a smaller size (3.1 nm) of the CoFe2O4 nanoparticles (compared with 4.5 and 5.9 nm). In addition, the catalytic activity is improved by partial substitution of Co with Ni, which also leads to a higher degree of inversion of the spinel structure. Theoretical calculations attribute the positive catalytic effect of Ni owing to the lower binding energy differences between adsorbed O and OH compared with pure cobalt or nickel ferrites, resulting in higher OER activity. Co0.5Ni0.5Fe2O4 exhibited a low overpotential of approximately 340 mV at 10 mA cm−2, a smaller Tafel slope of 51 mV dec−1, and stability over 30 h. The unique tunability of these CoFe2O4 nanocrystals provides great potential for their application as an efficient and competitive anode material in the field of electrochemical water splitting as well as for systematic fundamental studies aiming at understanding the correlation of composition and structure with performance in electrocatalysis. Enhancing exchange: Experimental and theoretical findings show that CoxNi1−xFe2O4 nanoparticles have lower binding energy differences of O and OH as well as high intrinsic electrical conductivity with structural inversion, leading to favorable oxygen evolution reaction (OER) activity compared with pure CoFe2O4 and NiFe2O4 as well as their physical mixtures.
doi_str_mv 10.1002/cctc.201700376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927142657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927142657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-1fec5351fab6559e9a85b1b7933eac5f267152f8e2edf6dba4295d32772a2cd3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKtb1wHXU_PRJJOlDK0KxULtUgiZTKIp00lNpur4653aUpeu3uVxzntwAbjGaIQRIrfGtGZEEBYIUcFPwADnXGQ0l_L0mHN0Di5SWiHEJRVsAF4WobYwOFiE9SYk3_rQQN1U8Nl_H_alrls4tTH61sIn3QQTu9TqOkHfwPbNwvlX92obOPkI9fbXX1htduESnLmes1eHOQTL6WRZPGSz-f1jcTfLDGWCZ9hZwyjDTpecMWmlzlmJSyEp7Q8xR7jAjLjcEls5XpV6TCSrKBGCaGIqOgQ3-7ObGN63NrVqFbax6T8qLInAY8KZ6KnRnjIxpBStU5vo1zp2CiO1K1DtClTHAntB7oVPX9vuH1oVxbL4c38Aa6l1OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927142657</pqid></control><display><type>article</type><title>Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction</title><source>Wiley Journals</source><creator>Chakrapani, Kalapu ; Bendt, Georg ; Hajiyani, Hamidreza ; Schwarzrock, Ingo ; Lunkenbein, Thomas ; Salamon, Soma ; Landers, Joachim ; Wende, Heiko ; Schlögl, Robert ; Pentcheva, Rossitza ; Behrens, Malte ; Schulz, Stephan</creator><creatorcontrib>Chakrapani, Kalapu ; Bendt, Georg ; Hajiyani, Hamidreza ; Schwarzrock, Ingo ; Lunkenbein, Thomas ; Salamon, Soma ; Landers, Joachim ; Wende, Heiko ; Schlögl, Robert ; Pentcheva, Rossitza ; Behrens, Malte ; Schulz, Stephan</creatorcontrib><description>Sub‐10 nm CoFe2O4 nanoparticles with different sizes and various compositions obtained by (partial) substitution of Co with Ni cations have been synthesized by using a one‐pot method from organic solutions by the decomposition of metal acetylacetonates in the presence of oleylamine. The electrocatalytic activity of CoFe2O4 towards the oxygen evolution reaction (OER) is clearly enhanced with a smaller size (3.1 nm) of the CoFe2O4 nanoparticles (compared with 4.5 and 5.9 nm). In addition, the catalytic activity is improved by partial substitution of Co with Ni, which also leads to a higher degree of inversion of the spinel structure. Theoretical calculations attribute the positive catalytic effect of Ni owing to the lower binding energy differences between adsorbed O and OH compared with pure cobalt or nickel ferrites, resulting in higher OER activity. Co0.5Ni0.5Fe2O4 exhibited a low overpotential of approximately 340 mV at 10 mA cm−2, a smaller Tafel slope of 51 mV dec−1, and stability over 30 h. The unique tunability of these CoFe2O4 nanocrystals provides great potential for their application as an efficient and competitive anode material in the field of electrochemical water splitting as well as for systematic fundamental studies aiming at understanding the correlation of composition and structure with performance in electrocatalysis. Enhancing exchange: Experimental and theoretical findings show that CoxNi1−xFe2O4 nanoparticles have lower binding energy differences of O and OH as well as high intrinsic electrical conductivity with structural inversion, leading to favorable oxygen evolution reaction (OER) activity compared with pure CoFe2O4 and NiFe2O4 as well as their physical mixtures.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201700376</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Binding energy ; Catalysis ; Catalytic activity ; Cobalt ferrites ; Competitive materials ; composition ; Correlation analysis ; density functional calculations ; Electrocatalysis ; Nanocrystals ; Nanoparticles ; Nickel ferrites ; oxygen evolution reaction ; Oxygen evolution reactions ; Slope stability ; Spinel ; spinel nanocrystals ; Water splitting</subject><ispartof>ChemCatChem, 2017-08, Vol.9 (15), p.2988-2995</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-1fec5351fab6559e9a85b1b7933eac5f267152f8e2edf6dba4295d32772a2cd3</citedby><cites>FETCH-LOGICAL-c3576-1fec5351fab6559e9a85b1b7933eac5f267152f8e2edf6dba4295d32772a2cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201700376$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201700376$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chakrapani, Kalapu</creatorcontrib><creatorcontrib>Bendt, Georg</creatorcontrib><creatorcontrib>Hajiyani, Hamidreza</creatorcontrib><creatorcontrib>Schwarzrock, Ingo</creatorcontrib><creatorcontrib>Lunkenbein, Thomas</creatorcontrib><creatorcontrib>Salamon, Soma</creatorcontrib><creatorcontrib>Landers, Joachim</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Pentcheva, Rossitza</creatorcontrib><creatorcontrib>Behrens, Malte</creatorcontrib><creatorcontrib>Schulz, Stephan</creatorcontrib><title>Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction</title><title>ChemCatChem</title><description>Sub‐10 nm CoFe2O4 nanoparticles with different sizes and various compositions obtained by (partial) substitution of Co with Ni cations have been synthesized by using a one‐pot method from organic solutions by the decomposition of metal acetylacetonates in the presence of oleylamine. The electrocatalytic activity of CoFe2O4 towards the oxygen evolution reaction (OER) is clearly enhanced with a smaller size (3.1 nm) of the CoFe2O4 nanoparticles (compared with 4.5 and 5.9 nm). In addition, the catalytic activity is improved by partial substitution of Co with Ni, which also leads to a higher degree of inversion of the spinel structure. Theoretical calculations attribute the positive catalytic effect of Ni owing to the lower binding energy differences between adsorbed O and OH compared with pure cobalt or nickel ferrites, resulting in higher OER activity. Co0.5Ni0.5Fe2O4 exhibited a low overpotential of approximately 340 mV at 10 mA cm−2, a smaller Tafel slope of 51 mV dec−1, and stability over 30 h. The unique tunability of these CoFe2O4 nanocrystals provides great potential for their application as an efficient and competitive anode material in the field of electrochemical water splitting as well as for systematic fundamental studies aiming at understanding the correlation of composition and structure with performance in electrocatalysis. Enhancing exchange: Experimental and theoretical findings show that CoxNi1−xFe2O4 nanoparticles have lower binding energy differences of O and OH as well as high intrinsic electrical conductivity with structural inversion, leading to favorable oxygen evolution reaction (OER) activity compared with pure CoFe2O4 and NiFe2O4 as well as their physical mixtures.</description><subject>Binding energy</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Cobalt ferrites</subject><subject>Competitive materials</subject><subject>composition</subject><subject>Correlation analysis</subject><subject>density functional calculations</subject><subject>Electrocatalysis</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nickel ferrites</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Slope stability</subject><subject>Spinel</subject><subject>spinel nanocrystals</subject><subject>Water splitting</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKtb1wHXU_PRJJOlDK0KxULtUgiZTKIp00lNpur4653aUpeu3uVxzntwAbjGaIQRIrfGtGZEEBYIUcFPwADnXGQ0l_L0mHN0Di5SWiHEJRVsAF4WobYwOFiE9SYk3_rQQN1U8Nl_H_alrls4tTH61sIn3QQTu9TqOkHfwPbNwvlX92obOPkI9fbXX1htduESnLmes1eHOQTL6WRZPGSz-f1jcTfLDGWCZ9hZwyjDTpecMWmlzlmJSyEp7Q8xR7jAjLjcEls5XpV6TCSrKBGCaGIqOgQ3-7ObGN63NrVqFbax6T8qLInAY8KZ6KnRnjIxpBStU5vo1zp2CiO1K1DtClTHAntB7oVPX9vuH1oVxbL4c38Aa6l1OA</recordid><startdate>20170809</startdate><enddate>20170809</enddate><creator>Chakrapani, Kalapu</creator><creator>Bendt, Georg</creator><creator>Hajiyani, Hamidreza</creator><creator>Schwarzrock, Ingo</creator><creator>Lunkenbein, Thomas</creator><creator>Salamon, Soma</creator><creator>Landers, Joachim</creator><creator>Wende, Heiko</creator><creator>Schlögl, Robert</creator><creator>Pentcheva, Rossitza</creator><creator>Behrens, Malte</creator><creator>Schulz, Stephan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170809</creationdate><title>Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction</title><author>Chakrapani, Kalapu ; Bendt, Georg ; Hajiyani, Hamidreza ; Schwarzrock, Ingo ; Lunkenbein, Thomas ; Salamon, Soma ; Landers, Joachim ; Wende, Heiko ; Schlögl, Robert ; Pentcheva, Rossitza ; Behrens, Malte ; Schulz, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-1fec5351fab6559e9a85b1b7933eac5f267152f8e2edf6dba4295d32772a2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binding energy</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Cobalt ferrites</topic><topic>Competitive materials</topic><topic>composition</topic><topic>Correlation analysis</topic><topic>density functional calculations</topic><topic>Electrocatalysis</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nickel ferrites</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Slope stability</topic><topic>Spinel</topic><topic>spinel nanocrystals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrapani, Kalapu</creatorcontrib><creatorcontrib>Bendt, Georg</creatorcontrib><creatorcontrib>Hajiyani, Hamidreza</creatorcontrib><creatorcontrib>Schwarzrock, Ingo</creatorcontrib><creatorcontrib>Lunkenbein, Thomas</creatorcontrib><creatorcontrib>Salamon, Soma</creatorcontrib><creatorcontrib>Landers, Joachim</creatorcontrib><creatorcontrib>Wende, Heiko</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Pentcheva, Rossitza</creatorcontrib><creatorcontrib>Behrens, Malte</creatorcontrib><creatorcontrib>Schulz, Stephan</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrapani, Kalapu</au><au>Bendt, Georg</au><au>Hajiyani, Hamidreza</au><au>Schwarzrock, Ingo</au><au>Lunkenbein, Thomas</au><au>Salamon, Soma</au><au>Landers, Joachim</au><au>Wende, Heiko</au><au>Schlögl, Robert</au><au>Pentcheva, Rossitza</au><au>Behrens, Malte</au><au>Schulz, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction</atitle><jtitle>ChemCatChem</jtitle><date>2017-08-09</date><risdate>2017</risdate><volume>9</volume><issue>15</issue><spage>2988</spage><epage>2995</epage><pages>2988-2995</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Sub‐10 nm CoFe2O4 nanoparticles with different sizes and various compositions obtained by (partial) substitution of Co with Ni cations have been synthesized by using a one‐pot method from organic solutions by the decomposition of metal acetylacetonates in the presence of oleylamine. The electrocatalytic activity of CoFe2O4 towards the oxygen evolution reaction (OER) is clearly enhanced with a smaller size (3.1 nm) of the CoFe2O4 nanoparticles (compared with 4.5 and 5.9 nm). In addition, the catalytic activity is improved by partial substitution of Co with Ni, which also leads to a higher degree of inversion of the spinel structure. Theoretical calculations attribute the positive catalytic effect of Ni owing to the lower binding energy differences between adsorbed O and OH compared with pure cobalt or nickel ferrites, resulting in higher OER activity. Co0.5Ni0.5Fe2O4 exhibited a low overpotential of approximately 340 mV at 10 mA cm−2, a smaller Tafel slope of 51 mV dec−1, and stability over 30 h. The unique tunability of these CoFe2O4 nanocrystals provides great potential for their application as an efficient and competitive anode material in the field of electrochemical water splitting as well as for systematic fundamental studies aiming at understanding the correlation of composition and structure with performance in electrocatalysis. Enhancing exchange: Experimental and theoretical findings show that CoxNi1−xFe2O4 nanoparticles have lower binding energy differences of O and OH as well as high intrinsic electrical conductivity with structural inversion, leading to favorable oxygen evolution reaction (OER) activity compared with pure CoFe2O4 and NiFe2O4 as well as their physical mixtures.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201700376</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2017-08, Vol.9 (15), p.2988-2995
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_1927142657
source Wiley Journals
subjects Binding energy
Catalysis
Catalytic activity
Cobalt ferrites
Competitive materials
composition
Correlation analysis
density functional calculations
Electrocatalysis
Nanocrystals
Nanoparticles
Nickel ferrites
oxygen evolution reaction
Oxygen evolution reactions
Slope stability
Spinel
spinel nanocrystals
Water splitting
title Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Composition%20and%20Size%20of%20Cobalt%20Ferrite%20Nanocrystals%20in%20the%20Oxygen%20Evolution%20Reaction&rft.jtitle=ChemCatChem&rft.au=Chakrapani,%20Kalapu&rft.date=2017-08-09&rft.volume=9&rft.issue=15&rft.spage=2988&rft.epage=2995&rft.pages=2988-2995&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201700376&rft_dat=%3Cproquest_cross%3E1927142657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927142657&rft_id=info:pmid/&rfr_iscdi=true