An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method

We present an efficient numerical method for anisotropic Poisson equations. The sixth-order accuracy is achieved through applying completed Richardson extrapolation on two fourth-order solutions computed from different scale grids with unequal mesh size discretization. Theoretical analysis is conduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2017-04, Vol.73 (8), p.1865-1877
Hauptverfasser: Dai, Ruxin, Lin, Pengpeng, Zhang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1877
container_issue 8
container_start_page 1865
container_title Computers & mathematics with applications (1987)
container_volume 73
creator Dai, Ruxin
Lin, Pengpeng
Zhang, Jun
description We present an efficient numerical method for anisotropic Poisson equations. The sixth-order accuracy is achieved through applying completed Richardson extrapolation on two fourth-order solutions computed from different scale grids with unequal mesh size discretization. Theoretical analysis is conducted to demonstrate that the Richardson extrapolation is able to obtain a sixth-order solution by removing the leading truncation error terms of the fourth-order solution from grid with unequal mesh sizes. The gain in efficiency is obtained through adopting partial semi-coarsening multigrid method to solve the resulting linear systems and multiscale multigrid computation to speed up the whole solution. Numerical experiments are conducted to verify the accuracy and efficiency of the proposed method and the results are compared with the existing fourth-order methods for solving 2D and 3D anisotropic Poisson equations.
doi_str_mv 10.1016/j.camwa.2017.02.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927138748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117300998</els_id><sourcerecordid>1927138748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c748649e5afa0bdf93496f7996105c3951a4560fadb229816c34c84ed68f7ec33</originalsourceid><addsrcrecordid>eNp9kN1qGzEQhUVJoY7bJ-iNoNfr6GetlS56EUx_AoaEkFwLRRrVMuvVRtLWySv0qSt7cx0YmGH4zhzmIPSVkhUlVFztV9YcjmbFCO1WhNUiH9CCyo43nRDyAi2IVLKhjNFP6DLnPSGk5Yws0L_rAYP3wQYYCs7hpeyamBwknGM_lRAH7GPCZgg5lhTHYPFdDDnXPTxP5gwcQ9lhGw9jDwUcvg92Z5I7Iy8lmTH2M2cGhw9TX0K2pod5_JNCXULZRfcZffSmz_DlrS_R488fD5vfzfb2183mettY3onS2K6VolWwNt6QJ-cVb5XwnVKCkrXlak1NuxbEG_fEmJJUWN5a2YIT0ndgOV-ib_PdMcXnCXLR-ziloVpqqlhHuawOleIzZVPMOYHXYwoHk141JfoUut7rc-j6FLomrBapqu-zCuoDfwMknU_JWnAhgS3axfCu_j_KP498</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927138748</pqid></control><display><type>article</type><title>An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dai, Ruxin ; Lin, Pengpeng ; Zhang, Jun</creator><creatorcontrib>Dai, Ruxin ; Lin, Pengpeng ; Zhang, Jun</creatorcontrib><description>We present an efficient numerical method for anisotropic Poisson equations. The sixth-order accuracy is achieved through applying completed Richardson extrapolation on two fourth-order solutions computed from different scale grids with unequal mesh size discretization. Theoretical analysis is conducted to demonstrate that the Richardson extrapolation is able to obtain a sixth-order solution by removing the leading truncation error terms of the fourth-order solution from grid with unequal mesh sizes. The gain in efficiency is obtained through adopting partial semi-coarsening multigrid method to solve the resulting linear systems and multiscale multigrid computation to speed up the whole solution. Numerical experiments are conducted to verify the accuracy and efficiency of the proposed method and the results are compared with the existing fourth-order methods for solving 2D and 3D anisotropic Poisson equations.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.02.020</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Anisotropic Poisson equation ; Anisotropy ; Coarsening ; Completed Richardson extrapolation ; Extrapolation ; Linear systems ; Multiscale analysis ; Multiscale multigrid computation ; Numerical analysis ; Poisson distribution ; Poisson equation ; Sixth-order compact scheme ; Studies ; Unequal mesh sizes</subject><ispartof>Computers &amp; mathematics with applications (1987), 2017-04, Vol.73 (8), p.1865-1877</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-c748649e5afa0bdf93496f7996105c3951a4560fadb229816c34c84ed68f7ec33</citedby><cites>FETCH-LOGICAL-c376t-c748649e5afa0bdf93496f7996105c3951a4560fadb229816c34c84ed68f7ec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2017.02.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dai, Ruxin</creatorcontrib><creatorcontrib>Lin, Pengpeng</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method</title><title>Computers &amp; mathematics with applications (1987)</title><description>We present an efficient numerical method for anisotropic Poisson equations. The sixth-order accuracy is achieved through applying completed Richardson extrapolation on two fourth-order solutions computed from different scale grids with unequal mesh size discretization. Theoretical analysis is conducted to demonstrate that the Richardson extrapolation is able to obtain a sixth-order solution by removing the leading truncation error terms of the fourth-order solution from grid with unequal mesh sizes. The gain in efficiency is obtained through adopting partial semi-coarsening multigrid method to solve the resulting linear systems and multiscale multigrid computation to speed up the whole solution. Numerical experiments are conducted to verify the accuracy and efficiency of the proposed method and the results are compared with the existing fourth-order methods for solving 2D and 3D anisotropic Poisson equations.</description><subject>Accuracy</subject><subject>Anisotropic Poisson equation</subject><subject>Anisotropy</subject><subject>Coarsening</subject><subject>Completed Richardson extrapolation</subject><subject>Extrapolation</subject><subject>Linear systems</subject><subject>Multiscale analysis</subject><subject>Multiscale multigrid computation</subject><subject>Numerical analysis</subject><subject>Poisson distribution</subject><subject>Poisson equation</subject><subject>Sixth-order compact scheme</subject><subject>Studies</subject><subject>Unequal mesh sizes</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kN1qGzEQhUVJoY7bJ-iNoNfr6GetlS56EUx_AoaEkFwLRRrVMuvVRtLWySv0qSt7cx0YmGH4zhzmIPSVkhUlVFztV9YcjmbFCO1WhNUiH9CCyo43nRDyAi2IVLKhjNFP6DLnPSGk5Yws0L_rAYP3wQYYCs7hpeyamBwknGM_lRAH7GPCZgg5lhTHYPFdDDnXPTxP5gwcQ9lhGw9jDwUcvg92Z5I7Iy8lmTH2M2cGhw9TX0K2pod5_JNCXULZRfcZffSmz_DlrS_R488fD5vfzfb2183mettY3onS2K6VolWwNt6QJ-cVb5XwnVKCkrXlak1NuxbEG_fEmJJUWN5a2YIT0ndgOV-ib_PdMcXnCXLR-ziloVpqqlhHuawOleIzZVPMOYHXYwoHk141JfoUut7rc-j6FLomrBapqu-zCuoDfwMknU_JWnAhgS3axfCu_j_KP498</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Dai, Ruxin</creator><creator>Lin, Pengpeng</creator><creator>Zhang, Jun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170415</creationdate><title>An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method</title><author>Dai, Ruxin ; Lin, Pengpeng ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c748649e5afa0bdf93496f7996105c3951a4560fadb229816c34c84ed68f7ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Anisotropic Poisson equation</topic><topic>Anisotropy</topic><topic>Coarsening</topic><topic>Completed Richardson extrapolation</topic><topic>Extrapolation</topic><topic>Linear systems</topic><topic>Multiscale analysis</topic><topic>Multiscale multigrid computation</topic><topic>Numerical analysis</topic><topic>Poisson distribution</topic><topic>Poisson equation</topic><topic>Sixth-order compact scheme</topic><topic>Studies</topic><topic>Unequal mesh sizes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Ruxin</creatorcontrib><creatorcontrib>Lin, Pengpeng</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Ruxin</au><au>Lin, Pengpeng</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>73</volume><issue>8</issue><spage>1865</spage><epage>1877</epage><pages>1865-1877</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We present an efficient numerical method for anisotropic Poisson equations. The sixth-order accuracy is achieved through applying completed Richardson extrapolation on two fourth-order solutions computed from different scale grids with unequal mesh size discretization. Theoretical analysis is conducted to demonstrate that the Richardson extrapolation is able to obtain a sixth-order solution by removing the leading truncation error terms of the fourth-order solution from grid with unequal mesh sizes. The gain in efficiency is obtained through adopting partial semi-coarsening multigrid method to solve the resulting linear systems and multiscale multigrid computation to speed up the whole solution. Numerical experiments are conducted to verify the accuracy and efficiency of the proposed method and the results are compared with the existing fourth-order methods for solving 2D and 3D anisotropic Poisson equations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.02.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2017-04, Vol.73 (8), p.1865-1877
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_1927138748
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Anisotropic Poisson equation
Anisotropy
Coarsening
Completed Richardson extrapolation
Extrapolation
Linear systems
Multiscale analysis
Multiscale multigrid computation
Numerical analysis
Poisson distribution
Poisson equation
Sixth-order compact scheme
Studies
Unequal mesh sizes
title An efficient sixth-order solution for anisotropic Poisson equation with completed Richardson extrapolation and multiscale multigrid method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20sixth-order%20solution%20for%20anisotropic%20Poisson%20equation%20with%20completed%20Richardson%20extrapolation%20and%20multiscale%20multigrid%20method&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Dai,%20Ruxin&rft.date=2017-04-15&rft.volume=73&rft.issue=8&rft.spage=1865&rft.epage=1877&rft.pages=1865-1877&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.02.020&rft_dat=%3Cproquest_cross%3E1927138748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927138748&rft_id=info:pmid/&rft_els_id=S0898122117300998&rfr_iscdi=true