Efficient and fast numerical method for pricing discrete double barrier option by projection method

In this paper, we introduce a new and considerably fast numerical method based on projection method in pricing discrete double barrier option. According to the Black–Scholes framework, the price of option in each monitoring dates is the solution of well-known partial differential equation that can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2017-04, Vol.73 (7), p.1539-1545
Hauptverfasser: Farnoosh, Rahman, Sobhani, Amirhossein, Beheshti, Mohammad Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1545
container_issue 7
container_start_page 1539
container_title Computers & mathematics with applications (1987)
container_volume 73
creator Farnoosh, Rahman
Sobhani, Amirhossein
Beheshti, Mohammad Hossein
description In this paper, we introduce a new and considerably fast numerical method based on projection method in pricing discrete double barrier option. According to the Black–Scholes framework, the price of option in each monitoring dates is the solution of well-known partial differential equation that can be expressed recursively upon the heat equation solution. These recursive solutions are approximated by projection method and expressed in operational matrix form. The most important advantage of this method is that its computational time is nearly fixed against monitoring dates increase. Afterward, in implementing projection method we use Legendre polynomials as an orthogonal basis. Finally, the numerical results show the validity and efficiency of presented method in comparison with some others.
doi_str_mv 10.1016/j.camwa.2017.01.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927136143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117300494</els_id><sourcerecordid>1927136143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-3be16e6ed7645f256e5995ff72118a16427ac611d34d7ec7d050f546efe860383</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg_fgFXgKed81sdpPdgwcp9QMKXvQc0mSiWbqbmmyV_nvT1rMwMMzjvZl5j5AbYCUwEHd9afTwo8uKgSwZ5OpOyAxayQspRHtKZqzt2gKqCs7JRUo9Y6zmFZsRs3DOG4_jRPVoqdNpouN2wOiNXtMBp8-Q0RDpJiN-_KDWJxNxQmrDdrVGutIxeow0bCYfRrraZWbo0Rymo_6KnDm9Tnj91y_J--Pibf5cLF-fXuYPy8JwKaaCrxAECrRS1I2rGoFN1zXOyQqg1SDqSmojACyvrUQjLWuYa2qBDlvBeMsvye1xb_7ga4tpUn3YxjGfVNBVEriAmmcWP7JMDClFdCpbG3TcKWBqn6bq1SFNtU9TMcjVZdX9UYXZwHc2rNI-NYPWx2xW2eD_1f8CMVV_TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927136143</pqid></control><display><type>article</type><title>Efficient and fast numerical method for pricing discrete double barrier option by projection method</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Farnoosh, Rahman ; Sobhani, Amirhossein ; Beheshti, Mohammad Hossein</creator><creatorcontrib>Farnoosh, Rahman ; Sobhani, Amirhossein ; Beheshti, Mohammad Hossein</creatorcontrib><description>In this paper, we introduce a new and considerably fast numerical method based on projection method in pricing discrete double barrier option. According to the Black–Scholes framework, the price of option in each monitoring dates is the solution of well-known partial differential equation that can be expressed recursively upon the heat equation solution. These recursive solutions are approximated by projection method and expressed in operational matrix form. The most important advantage of this method is that its computational time is nearly fixed against monitoring dates increase. Afterward, in implementing projection method we use Legendre polynomials as an orthogonal basis. Finally, the numerical results show the validity and efficiency of presented method in comparison with some others.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.01.019</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Black–Scholes model ; Double barrier option ; Legendre polynomials ; Monitoring ; Numerical analysis ; Option pricing ; Partial differential equations ; Polynomials ; Pricing ; Projection ; Projection methods ; Recursive methods ; Studies</subject><ispartof>Computers &amp; mathematics with applications (1987), 2017-04, Vol.73 (7), p.1539-1545</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-3be16e6ed7645f256e5995ff72118a16427ac611d34d7ec7d050f546efe860383</citedby><cites>FETCH-LOGICAL-c376t-3be16e6ed7645f256e5995ff72118a16427ac611d34d7ec7d050f546efe860383</cites><orcidid>0000-0001-5277-4655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2017.01.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Farnoosh, Rahman</creatorcontrib><creatorcontrib>Sobhani, Amirhossein</creatorcontrib><creatorcontrib>Beheshti, Mohammad Hossein</creatorcontrib><title>Efficient and fast numerical method for pricing discrete double barrier option by projection method</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we introduce a new and considerably fast numerical method based on projection method in pricing discrete double barrier option. According to the Black–Scholes framework, the price of option in each monitoring dates is the solution of well-known partial differential equation that can be expressed recursively upon the heat equation solution. These recursive solutions are approximated by projection method and expressed in operational matrix form. The most important advantage of this method is that its computational time is nearly fixed against monitoring dates increase. Afterward, in implementing projection method we use Legendre polynomials as an orthogonal basis. Finally, the numerical results show the validity and efficiency of presented method in comparison with some others.</description><subject>Black–Scholes model</subject><subject>Double barrier option</subject><subject>Legendre polynomials</subject><subject>Monitoring</subject><subject>Numerical analysis</subject><subject>Option pricing</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Pricing</subject><subject>Projection</subject><subject>Projection methods</subject><subject>Recursive methods</subject><subject>Studies</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg_fgFXgKed81sdpPdgwcp9QMKXvQc0mSiWbqbmmyV_nvT1rMwMMzjvZl5j5AbYCUwEHd9afTwo8uKgSwZ5OpOyAxayQspRHtKZqzt2gKqCs7JRUo9Y6zmFZsRs3DOG4_jRPVoqdNpouN2wOiNXtMBp8-Q0RDpJiN-_KDWJxNxQmrDdrVGutIxeow0bCYfRrraZWbo0Rymo_6KnDm9Tnj91y_J--Pibf5cLF-fXuYPy8JwKaaCrxAECrRS1I2rGoFN1zXOyQqg1SDqSmojACyvrUQjLWuYa2qBDlvBeMsvye1xb_7ga4tpUn3YxjGfVNBVEriAmmcWP7JMDClFdCpbG3TcKWBqn6bq1SFNtU9TMcjVZdX9UYXZwHc2rNI-NYPWx2xW2eD_1f8CMVV_TQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Farnoosh, Rahman</creator><creator>Sobhani, Amirhossein</creator><creator>Beheshti, Mohammad Hossein</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5277-4655</orcidid></search><sort><creationdate>20170401</creationdate><title>Efficient and fast numerical method for pricing discrete double barrier option by projection method</title><author>Farnoosh, Rahman ; Sobhani, Amirhossein ; Beheshti, Mohammad Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-3be16e6ed7645f256e5995ff72118a16427ac611d34d7ec7d050f546efe860383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Black–Scholes model</topic><topic>Double barrier option</topic><topic>Legendre polynomials</topic><topic>Monitoring</topic><topic>Numerical analysis</topic><topic>Option pricing</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Pricing</topic><topic>Projection</topic><topic>Projection methods</topic><topic>Recursive methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farnoosh, Rahman</creatorcontrib><creatorcontrib>Sobhani, Amirhossein</creatorcontrib><creatorcontrib>Beheshti, Mohammad Hossein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farnoosh, Rahman</au><au>Sobhani, Amirhossein</au><au>Beheshti, Mohammad Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and fast numerical method for pricing discrete double barrier option by projection method</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>73</volume><issue>7</issue><spage>1539</spage><epage>1545</epage><pages>1539-1545</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we introduce a new and considerably fast numerical method based on projection method in pricing discrete double barrier option. According to the Black–Scholes framework, the price of option in each monitoring dates is the solution of well-known partial differential equation that can be expressed recursively upon the heat equation solution. These recursive solutions are approximated by projection method and expressed in operational matrix form. The most important advantage of this method is that its computational time is nearly fixed against monitoring dates increase. Afterward, in implementing projection method we use Legendre polynomials as an orthogonal basis. Finally, the numerical results show the validity and efficiency of presented method in comparison with some others.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.01.019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5277-4655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2017-04, Vol.73 (7), p.1539-1545
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_1927136143
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Black–Scholes model
Double barrier option
Legendre polynomials
Monitoring
Numerical analysis
Option pricing
Partial differential equations
Polynomials
Pricing
Projection
Projection methods
Recursive methods
Studies
title Efficient and fast numerical method for pricing discrete double barrier option by projection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20fast%20numerical%20method%20for%20pricing%20discrete%20double%20barrier%20option%20by%20projection%20method&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Farnoosh,%20Rahman&rft.date=2017-04-01&rft.volume=73&rft.issue=7&rft.spage=1539&rft.epage=1545&rft.pages=1539-1545&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.01.019&rft_dat=%3Cproquest_cross%3E1927136143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927136143&rft_id=info:pmid/&rft_els_id=S0898122117300494&rfr_iscdi=true