ParMooN—A modernized program package based on mapped finite elements
ParMooN is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MooNMD (John and Matthies, 2004): strict decoupling of geometry and finite element spaces, implementation of mapped finite elements a...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2017-07, Vol.74 (1), p.74-88 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 74 |
creator | Wilbrandt, Ulrich Bartsch, Clemens Ahmed, Naveed Alia, Najib Anker, Felix Blank, Laura Caiazzo, Alfonso Ganesan, Sashikumaar Giere, Swetlana Matthies, Gunar Meesala, Raviteja Shamim, Abdus Venkatesan, Jagannath John, Volker |
description | ParMooN is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MooNMD (John and Matthies, 2004): strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of ParMooN. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library PETSc. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not. |
doi_str_mv | 10.1016/j.camwa.2016.12.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927129256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122116306915</els_id><sourcerecordid>1927129256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-631fc437ec0f916b51195b04db963dc6eee9c4cdfd89514152c2e772a32e870b3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBCyRmBN87MSJB4aqooBULgPMlmOfVAnNBTsFwcRD8IQ8CS5lZjoX_f-5fIScAk2AgjhvEqPbN52wUCTAEsroHplAkfM4F6LYJxNayCIGxuCQHHnfUEpTzuiELB60u-37u-_Pr1nU9hZdV3-gjQbXr5xuo0GbZ73CqNQ-dPsuavUwhKyqu3rECNfYYjf6Y3JQ6bXHk784JU-Ly8f5dby8v7qZz5ax4bkYY8GhMinP0dBKgigzAJmVNLWlFNwagYjSpMZWtpAZpJAxwzDPmeYMi5yWfErOdnPDfS8b9KNq-o3rwkoFkuXAJMtEUPGdyrjee4eVGlzdaveugKotMNWoX2BqC0wBUwFYcF3sXBgeeK3RKW9q7Aza2qEZle3rf_0_yvF1Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927129256</pqid></control><display><type>article</type><title>ParMooN—A modernized program package based on mapped finite elements</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wilbrandt, Ulrich ; Bartsch, Clemens ; Ahmed, Naveed ; Alia, Najib ; Anker, Felix ; Blank, Laura ; Caiazzo, Alfonso ; Ganesan, Sashikumaar ; Giere, Swetlana ; Matthies, Gunar ; Meesala, Raviteja ; Shamim, Abdus ; Venkatesan, Jagannath ; John, Volker</creator><creatorcontrib>Wilbrandt, Ulrich ; Bartsch, Clemens ; Ahmed, Naveed ; Alia, Najib ; Anker, Felix ; Blank, Laura ; Caiazzo, Alfonso ; Ganesan, Sashikumaar ; Giere, Swetlana ; Matthies, Gunar ; Meesala, Raviteja ; Shamim, Abdus ; Venkatesan, Jagannath ; John, Volker</creatorcontrib><description>ParMooN is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MooNMD (John and Matthies, 2004): strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of ParMooN. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library PETSc. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2016.12.020</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational efficiency ; Computing time ; Decoupling ; Distributed memory ; Finite element analysis ; Finite element method ; Geometric multigrid method ; Geometry ; Indication ; Mapped finite elements ; Mathematical analysis ; Modernization ; Parallel processing ; Parallelization ; Partial differential equations ; Solvers ; Studies ; Textbooks</subject><ispartof>Computers & mathematics with applications (1987), 2017-07, Vol.74 (1), p.74-88</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-631fc437ec0f916b51195b04db963dc6eee9c4cdfd89514152c2e772a32e870b3</citedby><cites>FETCH-LOGICAL-c376t-631fc437ec0f916b51195b04db963dc6eee9c4cdfd89514152c2e772a32e870b3</cites><orcidid>0000-0002-2711-4409 ; 0000-0001-8892-7270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122116306915$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Wilbrandt, Ulrich</creatorcontrib><creatorcontrib>Bartsch, Clemens</creatorcontrib><creatorcontrib>Ahmed, Naveed</creatorcontrib><creatorcontrib>Alia, Najib</creatorcontrib><creatorcontrib>Anker, Felix</creatorcontrib><creatorcontrib>Blank, Laura</creatorcontrib><creatorcontrib>Caiazzo, Alfonso</creatorcontrib><creatorcontrib>Ganesan, Sashikumaar</creatorcontrib><creatorcontrib>Giere, Swetlana</creatorcontrib><creatorcontrib>Matthies, Gunar</creatorcontrib><creatorcontrib>Meesala, Raviteja</creatorcontrib><creatorcontrib>Shamim, Abdus</creatorcontrib><creatorcontrib>Venkatesan, Jagannath</creatorcontrib><creatorcontrib>John, Volker</creatorcontrib><title>ParMooN—A modernized program package based on mapped finite elements</title><title>Computers & mathematics with applications (1987)</title><description>ParMooN is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MooNMD (John and Matthies, 2004): strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of ParMooN. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library PETSc. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.</description><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Decoupling</subject><subject>Distributed memory</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Geometric multigrid method</subject><subject>Geometry</subject><subject>Indication</subject><subject>Mapped finite elements</subject><subject>Mathematical analysis</subject><subject>Modernization</subject><subject>Parallel processing</subject><subject>Parallelization</subject><subject>Partial differential equations</subject><subject>Solvers</subject><subject>Studies</subject><subject>Textbooks</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBCyRmBN87MSJB4aqooBULgPMlmOfVAnNBTsFwcRD8IQ8CS5lZjoX_f-5fIScAk2AgjhvEqPbN52wUCTAEsroHplAkfM4F6LYJxNayCIGxuCQHHnfUEpTzuiELB60u-37u-_Pr1nU9hZdV3-gjQbXr5xuo0GbZ73CqNQ-dPsuavUwhKyqu3rECNfYYjf6Y3JQ6bXHk784JU-Ly8f5dby8v7qZz5ax4bkYY8GhMinP0dBKgigzAJmVNLWlFNwagYjSpMZWtpAZpJAxwzDPmeYMi5yWfErOdnPDfS8b9KNq-o3rwkoFkuXAJMtEUPGdyrjee4eVGlzdaveugKotMNWoX2BqC0wBUwFYcF3sXBgeeK3RKW9q7Aza2qEZle3rf_0_yvF1Lw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Wilbrandt, Ulrich</creator><creator>Bartsch, Clemens</creator><creator>Ahmed, Naveed</creator><creator>Alia, Najib</creator><creator>Anker, Felix</creator><creator>Blank, Laura</creator><creator>Caiazzo, Alfonso</creator><creator>Ganesan, Sashikumaar</creator><creator>Giere, Swetlana</creator><creator>Matthies, Gunar</creator><creator>Meesala, Raviteja</creator><creator>Shamim, Abdus</creator><creator>Venkatesan, Jagannath</creator><creator>John, Volker</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2711-4409</orcidid><orcidid>https://orcid.org/0000-0001-8892-7270</orcidid></search><sort><creationdate>20170701</creationdate><title>ParMooN—A modernized program package based on mapped finite elements</title><author>Wilbrandt, Ulrich ; Bartsch, Clemens ; Ahmed, Naveed ; Alia, Najib ; Anker, Felix ; Blank, Laura ; Caiazzo, Alfonso ; Ganesan, Sashikumaar ; Giere, Swetlana ; Matthies, Gunar ; Meesala, Raviteja ; Shamim, Abdus ; Venkatesan, Jagannath ; John, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-631fc437ec0f916b51195b04db963dc6eee9c4cdfd89514152c2e772a32e870b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Decoupling</topic><topic>Distributed memory</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Geometric multigrid method</topic><topic>Geometry</topic><topic>Indication</topic><topic>Mapped finite elements</topic><topic>Mathematical analysis</topic><topic>Modernization</topic><topic>Parallel processing</topic><topic>Parallelization</topic><topic>Partial differential equations</topic><topic>Solvers</topic><topic>Studies</topic><topic>Textbooks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilbrandt, Ulrich</creatorcontrib><creatorcontrib>Bartsch, Clemens</creatorcontrib><creatorcontrib>Ahmed, Naveed</creatorcontrib><creatorcontrib>Alia, Najib</creatorcontrib><creatorcontrib>Anker, Felix</creatorcontrib><creatorcontrib>Blank, Laura</creatorcontrib><creatorcontrib>Caiazzo, Alfonso</creatorcontrib><creatorcontrib>Ganesan, Sashikumaar</creatorcontrib><creatorcontrib>Giere, Swetlana</creatorcontrib><creatorcontrib>Matthies, Gunar</creatorcontrib><creatorcontrib>Meesala, Raviteja</creatorcontrib><creatorcontrib>Shamim, Abdus</creatorcontrib><creatorcontrib>Venkatesan, Jagannath</creatorcontrib><creatorcontrib>John, Volker</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilbrandt, Ulrich</au><au>Bartsch, Clemens</au><au>Ahmed, Naveed</au><au>Alia, Najib</au><au>Anker, Felix</au><au>Blank, Laura</au><au>Caiazzo, Alfonso</au><au>Ganesan, Sashikumaar</au><au>Giere, Swetlana</au><au>Matthies, Gunar</au><au>Meesala, Raviteja</au><au>Shamim, Abdus</au><au>Venkatesan, Jagannath</au><au>John, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ParMooN—A modernized program package based on mapped finite elements</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>74</volume><issue>1</issue><spage>74</spage><epage>88</epage><pages>74-88</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>ParMooN is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MooNMD (John and Matthies, 2004): strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of ParMooN. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library PETSc. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2016.12.020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2711-4409</orcidid><orcidid>https://orcid.org/0000-0001-8892-7270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2017-07, Vol.74 (1), p.74-88 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_1927129256 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computational efficiency Computing time Decoupling Distributed memory Finite element analysis Finite element method Geometric multigrid method Geometry Indication Mapped finite elements Mathematical analysis Modernization Parallel processing Parallelization Partial differential equations Solvers Studies Textbooks |
title | ParMooN—A modernized program package based on mapped finite elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ParMooN%E2%80%94A%20modernized%20program%20package%20based%20on%20mapped%20finite%20elements&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Wilbrandt,%20Ulrich&rft.date=2017-07-01&rft.volume=74&rft.issue=1&rft.spage=74&rft.epage=88&rft.pages=74-88&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2016.12.020&rft_dat=%3Cproquest_cross%3E1927129256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927129256&rft_id=info:pmid/&rft_els_id=S0898122116306915&rfr_iscdi=true |