A30 BIOMARKERS IN THORACIC ONCOLOGY: PREDICTING OUTCOMES: Mass Spectrometry Based Proteomic Analysis For Prognostication In Lung Cancer
Despite multibillion dollar research in discovery of newer treatment options, the overall five-year survival rate remains very poor. [...]there is a need for predictive tests that can identify which therapies are most appropriate for individual patients and assess their outcome. [...]prevalence of E...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory and critical care medicine 2017-01, Vol.195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | American journal of respiratory and critical care medicine |
container_volume | 195 |
creator | Ratcliff, S Ifeacho, V Santiago, T Upadhyay, D Peterson, M |
description | Despite multibillion dollar research in discovery of newer treatment options, the overall five-year survival rate remains very poor. [...]there is a need for predictive tests that can identify which therapies are most appropriate for individual patients and assess their outcome. [...]prevalence of EGFR mutation is |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1926867628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926867628</sourcerecordid><originalsourceid>FETCH-proquest_journals_19268676283</originalsourceid><addsrcrecordid>eNqNjMtqwkAYRgdpQXt5hx-6Dkwu5uIuTqMONRlJUmhXMsRRIjpj558sfIK-di30Abr6DofDNyITfxpOvShL6N2NaRJ6UZR9jMkD4pFSP0h9OiHfeUhhzkWZ129F3QCvoF2JOmecgaiYWIvl5ww2dfHKWcurJYj3lomyaGZQSkRoLqpz1pyVs1eYS1Q72FjjlDn3HeRanq7YIyyM_dUHbdD1nXS90cA1rAd9ACZ1p-wTud_LE6rnv30kL4uiZSvvYs3XoNBtj2awtz_c-lkQp3ESB2n4v-oHfBFPBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926867628</pqid></control><display><type>article</type><title>A30 BIOMARKERS IN THORACIC ONCOLOGY: PREDICTING OUTCOMES: Mass Spectrometry Based Proteomic Analysis For Prognostication In Lung Cancer</title><source>Journals@Ovid Complete</source><source>American Thoracic Society (ATS) Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ratcliff, S ; Ifeacho, V ; Santiago, T ; Upadhyay, D ; Peterson, M</creator><creatorcontrib>Ratcliff, S ; Ifeacho, V ; Santiago, T ; Upadhyay, D ; Peterson, M</creatorcontrib><description>Despite multibillion dollar research in discovery of newer treatment options, the overall five-year survival rate remains very poor. [...]there is a need for predictive tests that can identify which therapies are most appropriate for individual patients and assess their outcome. [...]prevalence of EGFR mutation is <18% in any given population per lung cancer consortium. Since majority of NSCLC cases do not harbor activating mutations in the EGFR gene, this test needs to be assessed in all patients with NSCLC.</description><identifier>ISSN: 1073-449X</identifier><identifier>EISSN: 1535-4970</identifier><language>eng</language><publisher>New York: American Thoracic Society</publisher><subject>Lung cancer ; Mass spectrometry ; Medical prognosis ; Mutation ; Patients ; Scientific imaging</subject><ispartof>American journal of respiratory and critical care medicine, 2017-01, Vol.195</ispartof><rights>Copyright American Thoracic Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Ratcliff, S</creatorcontrib><creatorcontrib>Ifeacho, V</creatorcontrib><creatorcontrib>Santiago, T</creatorcontrib><creatorcontrib>Upadhyay, D</creatorcontrib><creatorcontrib>Peterson, M</creatorcontrib><title>A30 BIOMARKERS IN THORACIC ONCOLOGY: PREDICTING OUTCOMES: Mass Spectrometry Based Proteomic Analysis For Prognostication In Lung Cancer</title><title>American journal of respiratory and critical care medicine</title><description>Despite multibillion dollar research in discovery of newer treatment options, the overall five-year survival rate remains very poor. [...]there is a need for predictive tests that can identify which therapies are most appropriate for individual patients and assess their outcome. [...]prevalence of EGFR mutation is <18% in any given population per lung cancer consortium. Since majority of NSCLC cases do not harbor activating mutations in the EGFR gene, this test needs to be assessed in all patients with NSCLC.</description><subject>Lung cancer</subject><subject>Mass spectrometry</subject><subject>Medical prognosis</subject><subject>Mutation</subject><subject>Patients</subject><subject>Scientific imaging</subject><issn>1073-449X</issn><issn>1535-4970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNjMtqwkAYRgdpQXt5hx-6Dkwu5uIuTqMONRlJUmhXMsRRIjpj558sfIK-di30Abr6DofDNyITfxpOvShL6N2NaRJ6UZR9jMkD4pFSP0h9OiHfeUhhzkWZ129F3QCvoF2JOmecgaiYWIvl5ww2dfHKWcurJYj3lomyaGZQSkRoLqpz1pyVs1eYS1Q72FjjlDn3HeRanq7YIyyM_dUHbdD1nXS90cA1rAd9ACZ1p-wTud_LE6rnv30kL4uiZSvvYs3XoNBtj2awtz_c-lkQp3ESB2n4v-oHfBFPBg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ratcliff, S</creator><creator>Ifeacho, V</creator><creator>Santiago, T</creator><creator>Upadhyay, D</creator><creator>Peterson, M</creator><general>American Thoracic Society</general><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170101</creationdate><title>A30 BIOMARKERS IN THORACIC ONCOLOGY: PREDICTING OUTCOMES: Mass Spectrometry Based Proteomic Analysis For Prognostication In Lung Cancer</title><author>Ratcliff, S ; Ifeacho, V ; Santiago, T ; Upadhyay, D ; Peterson, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_19268676283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Lung cancer</topic><topic>Mass spectrometry</topic><topic>Medical prognosis</topic><topic>Mutation</topic><topic>Patients</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratcliff, S</creatorcontrib><creatorcontrib>Ifeacho, V</creatorcontrib><creatorcontrib>Santiago, T</creatorcontrib><creatorcontrib>Upadhyay, D</creatorcontrib><creatorcontrib>Peterson, M</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>American journal of respiratory and critical care medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratcliff, S</au><au>Ifeacho, V</au><au>Santiago, T</au><au>Upadhyay, D</au><au>Peterson, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A30 BIOMARKERS IN THORACIC ONCOLOGY: PREDICTING OUTCOMES: Mass Spectrometry Based Proteomic Analysis For Prognostication In Lung Cancer</atitle><jtitle>American journal of respiratory and critical care medicine</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>195</volume><issn>1073-449X</issn><eissn>1535-4970</eissn><abstract>Despite multibillion dollar research in discovery of newer treatment options, the overall five-year survival rate remains very poor. [...]there is a need for predictive tests that can identify which therapies are most appropriate for individual patients and assess their outcome. [...]prevalence of EGFR mutation is <18% in any given population per lung cancer consortium. Since majority of NSCLC cases do not harbor activating mutations in the EGFR gene, this test needs to be assessed in all patients with NSCLC.</abstract><cop>New York</cop><pub>American Thoracic Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-449X |
ispartof | American journal of respiratory and critical care medicine, 2017-01, Vol.195 |
issn | 1073-449X 1535-4970 |
language | eng |
recordid | cdi_proquest_journals_1926867628 |
source | Journals@Ovid Complete; American Thoracic Society (ATS) Journals Online; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Lung cancer Mass spectrometry Medical prognosis Mutation Patients Scientific imaging |
title | A30 BIOMARKERS IN THORACIC ONCOLOGY: PREDICTING OUTCOMES: Mass Spectrometry Based Proteomic Analysis For Prognostication In Lung Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A30%20BIOMARKERS%20IN%20THORACIC%20ONCOLOGY:%20PREDICTING%20OUTCOMES:%20Mass%20Spectrometry%20Based%20Proteomic%20Analysis%20For%20Prognostication%20In%20Lung%20Cancer&rft.jtitle=American%20journal%20of%20respiratory%20and%20critical%20care%20medicine&rft.au=Ratcliff,%20S&rft.date=2017-01-01&rft.volume=195&rft.issn=1073-449X&rft.eissn=1535-4970&rft_id=info:doi/&rft_dat=%3Cproquest%3E1926867628%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926867628&rft_id=info:pmid/&rfr_iscdi=true |