Riemann-Hilbert-type Boundary Value Problems on a Half Hexagon
In this article we discuss the explicit solvability of both Schwarz boundary value problem and Riemann-Hilbert boundary value problem on a half hexagon in the complex plane. Schwarz-type and Pompeiu-type integrals are obtained. The boundary behavior of these operators is discussed. Finally, we inves...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2017-09, Vol.33 (9), p.1249-1266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1266 |
---|---|
container_issue | 9 |
container_start_page | 1249 |
container_title | Acta mathematica Sinica. English series |
container_volume | 33 |
creator | Akel, Mohamed Alabbad, Fatimah |
description | In this article we discuss the explicit solvability of both Schwarz boundary value problem and Riemann-Hilbert boundary value problem on a half hexagon in the complex plane. Schwarz-type and Pompeiu-type integrals are obtained. The boundary behavior of these operators is discussed. Finally, we investigate the Schwarz problem and the Riemann-Hilbert problem for inhomogeneous Cauchy-Riemann equations. |
doi_str_mv | 10.1007/s10114-016-6127-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1926844571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672806401</cqvip_id><sourcerecordid>1926844571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5e133828d9dda578d278310f783ccc09dcaa72a12d3685811f8db623b50572123</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG9Fz9FM0vzpRVBRKywool5D2qTrLt1mN2nB_fZm6SKevMzM4f3eYx5C50CugBB5HYEA5JiAwAKoxOIATSBnBZYC5OH-VhzEMTqJcUkI5wURE3TztnAr03W4XLSVCz3ut2uX3fmhsyZss0_TDi57Db5q3SpmvstMVpq2yUr3bea-O0VHjWmjO9vvKfp4fHi_L_Hs5en5_naGa1rwHnMHjCmqbGGt4VJZKhUD0qRZ1zUpbG2MpAaoZUJxBdAoWwnKKk64pEDZFF2OvuvgN4OLvV76IXQpUkNBhcpzLiGpYFTVwccYXKPXYbFKf2ggeleTHmvSqSa9q0mLxNCRiUnbzV344_wPdLEP-vLdfJO43yQhqSIiJ8B-AF4vc2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926844571</pqid></control><display><type>article</type><title>Riemann-Hilbert-type Boundary Value Problems on a Half Hexagon</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Akel, Mohamed ; Alabbad, Fatimah</creator><creatorcontrib>Akel, Mohamed ; Alabbad, Fatimah</creatorcontrib><description>In this article we discuss the explicit solvability of both Schwarz boundary value problem and Riemann-Hilbert boundary value problem on a half hexagon in the complex plane. Schwarz-type and Pompeiu-type integrals are obtained. The boundary behavior of these operators is discussed. Finally, we investigate the Schwarz problem and the Riemann-Hilbert problem for inhomogeneous Cauchy-Riemann equations.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-016-6127-6</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Boundary value problems ; Cauchy-Riemann equations ; Hilbert space ; Integrals ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Sinica. English series, 2017-09, Vol.33 (9), p.1249-1266</ispartof><rights>Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany 2017</rights><rights>Acta Mathematica Sinica, English Series is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-5e133828d9dda578d278310f783ccc09dcaa72a12d3685811f8db623b50572123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85800X/85800X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-016-6127-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-016-6127-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Akel, Mohamed</creatorcontrib><creatorcontrib>Alabbad, Fatimah</creatorcontrib><title>Riemann-Hilbert-type Boundary Value Problems on a Half Hexagon</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><addtitle>Acta Mathematica Sinica</addtitle><description>In this article we discuss the explicit solvability of both Schwarz boundary value problem and Riemann-Hilbert boundary value problem on a half hexagon in the complex plane. Schwarz-type and Pompeiu-type integrals are obtained. The boundary behavior of these operators is discussed. Finally, we investigate the Schwarz problem and the Riemann-Hilbert problem for inhomogeneous Cauchy-Riemann equations.</description><subject>Boundary value problems</subject><subject>Cauchy-Riemann equations</subject><subject>Hilbert space</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AG9Fz9FM0vzpRVBRKywool5D2qTrLt1mN2nB_fZm6SKevMzM4f3eYx5C50CugBB5HYEA5JiAwAKoxOIATSBnBZYC5OH-VhzEMTqJcUkI5wURE3TztnAr03W4XLSVCz3ut2uX3fmhsyZss0_TDi57Db5q3SpmvstMVpq2yUr3bea-O0VHjWmjO9vvKfp4fHi_L_Hs5en5_naGa1rwHnMHjCmqbGGt4VJZKhUD0qRZ1zUpbG2MpAaoZUJxBdAoWwnKKk64pEDZFF2OvuvgN4OLvV76IXQpUkNBhcpzLiGpYFTVwccYXKPXYbFKf2ggeleTHmvSqSa9q0mLxNCRiUnbzV344_wPdLEP-vLdfJO43yQhqSIiJ8B-AF4vc2Y</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Akel, Mohamed</creator><creator>Alabbad, Fatimah</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>Riemann-Hilbert-type Boundary Value Problems on a Half Hexagon</title><author>Akel, Mohamed ; Alabbad, Fatimah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5e133828d9dda578d278310f783ccc09dcaa72a12d3685811f8db623b50572123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><topic>Cauchy-Riemann equations</topic><topic>Hilbert space</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akel, Mohamed</creatorcontrib><creatorcontrib>Alabbad, Fatimah</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akel, Mohamed</au><au>Alabbad, Fatimah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann-Hilbert-type Boundary Value Problems on a Half Hexagon</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><addtitle>Acta Mathematica Sinica</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>33</volume><issue>9</issue><spage>1249</spage><epage>1266</epage><pages>1249-1266</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this article we discuss the explicit solvability of both Schwarz boundary value problem and Riemann-Hilbert boundary value problem on a half hexagon in the complex plane. Schwarz-type and Pompeiu-type integrals are obtained. The boundary behavior of these operators is discussed. Finally, we investigate the Schwarz problem and the Riemann-Hilbert problem for inhomogeneous Cauchy-Riemann equations.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-016-6127-6</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2017-09, Vol.33 (9), p.1249-1266 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_1926844571 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Boundary value problems Cauchy-Riemann equations Hilbert space Integrals Mathematics Mathematics and Statistics |
title | Riemann-Hilbert-type Boundary Value Problems on a Half Hexagon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann-Hilbert-type%20Boundary%20Value%20Problems%20on%20a%20Half%20Hexagon&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Akel,%20Mohamed&rft.date=2017-09-01&rft.volume=33&rft.issue=9&rft.spage=1249&rft.epage=1266&rft.pages=1249-1266&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-016-6127-6&rft_dat=%3Cproquest_cross%3E1926844571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926844571&rft_id=info:pmid/&rft_cqvip_id=672806401&rfr_iscdi=true |