Diagnostics of Coronal Bright Points using IRIS, AIA, and HMI Observations

We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2017-08, Vol.292 (8), p.1, Article 108
Hauptverfasser: Kayshap, P., Dwivedi, B. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1
container_title Solar physics
container_volume 292
creator Kayshap, P.
Dwivedi, B. N.
description We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) temperatures. A 3D potential magnetic field extrapolation predicts the dominance of magnetic loops in the extent of both CBPs, which are clearly visible at the Si  iv 1393.75 Å line formation temperature. Short, low-lying magnetic loops or loop segments are the integral parts of these CBPs at TR temperature. A correlation between the various parameters of Mg  ii resonance lines ( e.g. intensity, Doppler velocity, velocity gradient) is present in the region of magnetic loops or loop segments. However, a quiet-Sun (QS) region does not show any correlation. Doppler velocities as well as the full width at half maximum (FWHM) of these lines are very prominent in the magnetic loops and loop segments compared to the Doppler velocities and FWHM in the QS region. Higher red-shifts and FWHM at TR temperatures are directly related to the dominance of the energy release process in these regions in the framework of the nanoflare model. A magnetogram from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) reveals the existence of two opposite magnetic polarities in the extent of both CBPs, which is a very well established result. We find that one CBP is formed by the convergence of two opposite magnetic polarities, while the other is triggered by the emergence of a new magnetic field prior to the onset of this CBP.
doi_str_mv 10.1007/s11207-017-1132-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1926842719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1926842719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-273c4d09dd4d673b6e926e3ec160a4e6034e0f382afbb8bdf010265691262c333</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscW1g106d5FhKoUFFRfxI3CwncUKqEhdvisTbkygcuHDaOcw3mh3GzhEuESC6IkQBUQAYBYhSBHjARjiNZACJfDtkIwAZ9zo-ZidEG4Cemo7Y_U1tqsZRW-fEXcnnzrvGbPm1r6v3lj-6ummJ76luKp4-pc8TPktnE26agi8fUr7OyPov09auoVN2VJot2bPfO2avt4uX-TJYre_S-WwV5BJVG4hI5mEBSVGEhYpkpmwilJU2RwUmtApkaKGUsTBllsVZUXZVhZqqBIUSuZRyzC6G3J13n3tLrd64ve9Kk8YuKg5FhEnnwsGVe0fkbal3vv4w_lsj6P55PUymu8l0P5nGjhEDQ523qaz_k_wv9ANuMmuZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926842719</pqid></control><display><type>article</type><title>Diagnostics of Coronal Bright Points using IRIS, AIA, and HMI Observations</title><source>Springer Nature - Complete Springer Journals</source><creator>Kayshap, P. ; Dwivedi, B. N.</creator><creatorcontrib>Kayshap, P. ; Dwivedi, B. N.</creatorcontrib><description>We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) temperatures. A 3D potential magnetic field extrapolation predicts the dominance of magnetic loops in the extent of both CBPs, which are clearly visible at the Si  iv 1393.75 Å line formation temperature. Short, low-lying magnetic loops or loop segments are the integral parts of these CBPs at TR temperature. A correlation between the various parameters of Mg  ii resonance lines ( e.g. intensity, Doppler velocity, velocity gradient) is present in the region of magnetic loops or loop segments. However, a quiet-Sun (QS) region does not show any correlation. Doppler velocities as well as the full width at half maximum (FWHM) of these lines are very prominent in the magnetic loops and loop segments compared to the Doppler velocities and FWHM in the QS region. Higher red-shifts and FWHM at TR temperatures are directly related to the dominance of the energy release process in these regions in the framework of the nanoflare model. A magnetogram from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) reveals the existence of two opposite magnetic polarities in the extent of both CBPs, which is a very well established result. We find that one CBP is formed by the convergence of two opposite magnetic polarities, while the other is triggered by the emergence of a new magnetic field prior to the onset of this CBP.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-017-1132-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Corona ; Correlation ; Diagnostics ; Elongation ; Light ; Magnetic fields ; Magnetic loops ; Physics ; Physics and Astronomy ; Resonance lines ; Segments ; Solar activity ; Solar corona ; Solar magnetic field ; Solar observatories ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spectroscopic analysis ; Spectrum analysis ; Sun</subject><ispartof>Solar physics, 2017-08, Vol.292 (8), p.1, Article 108</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Solar Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-273c4d09dd4d673b6e926e3ec160a4e6034e0f382afbb8bdf010265691262c333</citedby><cites>FETCH-LOGICAL-c316t-273c4d09dd4d673b6e926e3ec160a4e6034e0f382afbb8bdf010265691262c333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-017-1132-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-017-1132-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kayshap, P.</creatorcontrib><creatorcontrib>Dwivedi, B. N.</creatorcontrib><title>Diagnostics of Coronal Bright Points using IRIS, AIA, and HMI Observations</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) temperatures. A 3D potential magnetic field extrapolation predicts the dominance of magnetic loops in the extent of both CBPs, which are clearly visible at the Si  iv 1393.75 Å line formation temperature. Short, low-lying magnetic loops or loop segments are the integral parts of these CBPs at TR temperature. A correlation between the various parameters of Mg  ii resonance lines ( e.g. intensity, Doppler velocity, velocity gradient) is present in the region of magnetic loops or loop segments. However, a quiet-Sun (QS) region does not show any correlation. Doppler velocities as well as the full width at half maximum (FWHM) of these lines are very prominent in the magnetic loops and loop segments compared to the Doppler velocities and FWHM in the QS region. Higher red-shifts and FWHM at TR temperatures are directly related to the dominance of the energy release process in these regions in the framework of the nanoflare model. A magnetogram from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) reveals the existence of two opposite magnetic polarities in the extent of both CBPs, which is a very well established result. We find that one CBP is formed by the convergence of two opposite magnetic polarities, while the other is triggered by the emergence of a new magnetic field prior to the onset of this CBP.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Corona</subject><subject>Correlation</subject><subject>Diagnostics</subject><subject>Elongation</subject><subject>Light</subject><subject>Magnetic fields</subject><subject>Magnetic loops</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Resonance lines</subject><subject>Segments</subject><subject>Solar activity</subject><subject>Solar corona</subject><subject>Solar magnetic field</subject><subject>Solar observatories</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Sun</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwscW1g106d5FhKoUFFRfxI3CwncUKqEhdvisTbkygcuHDaOcw3mh3GzhEuESC6IkQBUQAYBYhSBHjARjiNZACJfDtkIwAZ9zo-ZidEG4Cemo7Y_U1tqsZRW-fEXcnnzrvGbPm1r6v3lj-6ummJ76luKp4-pc8TPktnE26agi8fUr7OyPov09auoVN2VJot2bPfO2avt4uX-TJYre_S-WwV5BJVG4hI5mEBSVGEhYpkpmwilJU2RwUmtApkaKGUsTBllsVZUXZVhZqqBIUSuZRyzC6G3J13n3tLrd64ve9Kk8YuKg5FhEnnwsGVe0fkbal3vv4w_lsj6P55PUymu8l0P5nGjhEDQ523qaz_k_wv9ANuMmuZ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Kayshap, P.</creator><creator>Dwivedi, B. N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170801</creationdate><title>Diagnostics of Coronal Bright Points using IRIS, AIA, and HMI Observations</title><author>Kayshap, P. ; Dwivedi, B. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-273c4d09dd4d673b6e926e3ec160a4e6034e0f382afbb8bdf010265691262c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Corona</topic><topic>Correlation</topic><topic>Diagnostics</topic><topic>Elongation</topic><topic>Light</topic><topic>Magnetic fields</topic><topic>Magnetic loops</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Resonance lines</topic><topic>Segments</topic><topic>Solar activity</topic><topic>Solar corona</topic><topic>Solar magnetic field</topic><topic>Solar observatories</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayshap, P.</creatorcontrib><creatorcontrib>Dwivedi, B. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayshap, P.</au><au>Dwivedi, B. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnostics of Coronal Bright Points using IRIS, AIA, and HMI Observations</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>292</volume><issue>8</issue><spage>1</spage><pages>1-</pages><artnum>108</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>We perform the detailed imaging and spectroscopic analysis of two coronal bright points (CBPs). These CBPs are dominated by bright dots or elongated bright features. Their rapid temporal variations lead to a continuous change in their overall morphology at chromospheric and transition-region (TR) temperatures. A 3D potential magnetic field extrapolation predicts the dominance of magnetic loops in the extent of both CBPs, which are clearly visible at the Si  iv 1393.75 Å line formation temperature. Short, low-lying magnetic loops or loop segments are the integral parts of these CBPs at TR temperature. A correlation between the various parameters of Mg  ii resonance lines ( e.g. intensity, Doppler velocity, velocity gradient) is present in the region of magnetic loops or loop segments. However, a quiet-Sun (QS) region does not show any correlation. Doppler velocities as well as the full width at half maximum (FWHM) of these lines are very prominent in the magnetic loops and loop segments compared to the Doppler velocities and FWHM in the QS region. Higher red-shifts and FWHM at TR temperatures are directly related to the dominance of the energy release process in these regions in the framework of the nanoflare model. A magnetogram from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) reveals the existence of two opposite magnetic polarities in the extent of both CBPs, which is a very well established result. We find that one CBP is formed by the convergence of two opposite magnetic polarities, while the other is triggered by the emergence of a new magnetic field prior to the onset of this CBP.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-017-1132-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2017-08, Vol.292 (8), p.1, Article 108
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_journals_1926842719
source Springer Nature - Complete Springer Journals
subjects Astrophysics and Astroparticles
Atmospheric Sciences
Corona
Correlation
Diagnostics
Elongation
Light
Magnetic fields
Magnetic loops
Physics
Physics and Astronomy
Resonance lines
Segments
Solar activity
Solar corona
Solar magnetic field
Solar observatories
Solar physics
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spectroscopic analysis
Spectrum analysis
Sun
title Diagnostics of Coronal Bright Points using IRIS, AIA, and HMI Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnostics%20of%20Coronal%20Bright%20Points%20using%20IRIS,%20AIA,%20and%20HMI%20Observations&rft.jtitle=Solar%20physics&rft.au=Kayshap,%20P.&rft.date=2017-08-01&rft.volume=292&rft.issue=8&rft.spage=1&rft.pages=1-&rft.artnum=108&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-017-1132-1&rft_dat=%3Cproquest_cross%3E1926842719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926842719&rft_id=info:pmid/&rfr_iscdi=true