Experimental study on the diffusion–kinetics interaction in heterogeneous reaction of coal

The diffusion of oxygen (O 2 ) plays an important role in the heterogeneous oxidation of coal and biomass, but is inadequately understood. This work aims to study the influence of intra-, inter-particle and external O 2 diffusions on the high-temperature heterogeneous oxidation using the TG-FTIR tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2017-09, Vol.129 (3), p.1625-1637
Hauptverfasser: Song, Zeyang, Huang, Xinyan, Luo, Minggang, Gong, Junhui, Pan, Xuhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1637
container_issue 3
container_start_page 1625
container_title Journal of thermal analysis and calorimetry
container_volume 129
creator Song, Zeyang
Huang, Xinyan
Luo, Minggang
Gong, Junhui
Pan, Xuhai
description The diffusion of oxygen (O 2 ) plays an important role in the heterogeneous oxidation of coal and biomass, but is inadequately understood. This work aims to study the influence of intra-, inter-particle and external O 2 diffusions on the high-temperature heterogeneous oxidation using the TG-FTIR technique and two bituminous coals as example. Results show that coal sample of higher reactivity and smaller pore surface area is more sensitive to the O 2 diffusion. Specifically, increasing the size of particle, the reduced intra-particle (Knudsen) diffusion can reduce the conversion rate by 10–50%. While increasing the size of sample, the effective inter-particle diffusion shows a linear decrease. Comparatively, the influences of inter-particle and external diffusion in the TG scale (10 mg) and low heating rates (2 K min −1 ), the influence of thermal diffusion is strong enough to cause a thermal leap for the oxidation. Kinetic analysis using n th-order model-fitting method predicts the apparent activation energy ( E ) decreases with increasing reactivity. However, both model-free and Kissinger’s methods show E increases with increasing reactivity, against the physical definition of E . This work may help understand the diffusion–kinetics interaction in the fuel conversion and smoldering fire of coal and biomass.
doi_str_mv 10.1007/s10973-017-6386-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1926173240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499932937</galeid><sourcerecordid>A499932937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1d19e28e1536c2e65aa062b9c4d77a063c4af7a8353da2dd00469ae46cfa7e7e3</originalsourceid><addsrcrecordid>eNp1kbtOBSEURSdGE58fYDeJlcUojxkYSmN8JSYmPjoTgszhil7hCkxy7fwH_9Av8Zix0MJQsDmsDRx2Ve1SckAJkYeZEiV5Q6hsBO9FQ1eqDdr1fcMUE6uoOWpBO7Jebeb8RAhRitCN6v5kuYDkXyAUM69zGYe3Ooa6PEI9eOfG7GP4fP949gGKt7n2oUAytmAZdf0IuIwzCBDHXCf42YmuttHMt6s1Z-YZdn7mreru9OT2-Ly5vDq7OD66bGzLRGnoQBWwHmjHhWUgOmOIYA_KtoOUKLltjZOm5x0fDBsGQlqhDLTCOiNBAt-q9qZzFym-jpCLfopjCnilptg-lZy1BKmDiZqZOWgfXCzYCY4BXryNAZzH-lGrlOJMcYmG_T8GZAosy8yMOeuLm-u_LJ1Ym2LOCZxe4K-a9KYp0d8J6SkhjQnp74Q0RQ-bPBnZMIP069n_mr4AlmGU2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926173240</pqid></control><display><type>article</type><title>Experimental study on the diffusion–kinetics interaction in heterogeneous reaction of coal</title><source>SpringerLink Journals</source><creator>Song, Zeyang ; Huang, Xinyan ; Luo, Minggang ; Gong, Junhui ; Pan, Xuhai</creator><creatorcontrib>Song, Zeyang ; Huang, Xinyan ; Luo, Minggang ; Gong, Junhui ; Pan, Xuhai</creatorcontrib><description>The diffusion of oxygen (O 2 ) plays an important role in the heterogeneous oxidation of coal and biomass, but is inadequately understood. This work aims to study the influence of intra-, inter-particle and external O 2 diffusions on the high-temperature heterogeneous oxidation using the TG-FTIR technique and two bituminous coals as example. Results show that coal sample of higher reactivity and smaller pore surface area is more sensitive to the O 2 diffusion. Specifically, increasing the size of particle, the reduced intra-particle (Knudsen) diffusion can reduce the conversion rate by 10–50%. While increasing the size of sample, the effective inter-particle diffusion shows a linear decrease. Comparatively, the influences of inter-particle and external diffusion in the TG scale (&lt;5 mm) are weaker. For large TG samples (&gt;10 mg) and low heating rates (2 K min −1 ), the influence of thermal diffusion is strong enough to cause a thermal leap for the oxidation. Kinetic analysis using n th-order model-fitting method predicts the apparent activation energy ( E ) decreases with increasing reactivity. However, both model-free and Kissinger’s methods show E increases with increasing reactivity, against the physical definition of E . This work may help understand the diffusion–kinetics interaction in the fuel conversion and smoldering fire of coal and biomass.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6386-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Activation analysis ; Activation energy ; Analysis ; Analytical Chemistry ; Bituminous coal ; Chemistry ; Chemistry and Materials Science ; Coal ; Conversion ; Diffusion ; Diffusion rate ; Energy consumption ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Oxidation ; Particle diffusion ; Physical Chemistry ; Polymer Sciences ; Reaction kinetics ; Reactivity ; Smoldering ; Thermal diffusion</subject><ispartof>Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1625-1637</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1d19e28e1536c2e65aa062b9c4d77a063c4af7a8353da2dd00469ae46cfa7e7e3</citedby><cites>FETCH-LOGICAL-c426t-1d19e28e1536c2e65aa062b9c4d77a063c4af7a8353da2dd00469ae46cfa7e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6386-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6386-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Song, Zeyang</creatorcontrib><creatorcontrib>Huang, Xinyan</creatorcontrib><creatorcontrib>Luo, Minggang</creatorcontrib><creatorcontrib>Gong, Junhui</creatorcontrib><creatorcontrib>Pan, Xuhai</creatorcontrib><title>Experimental study on the diffusion–kinetics interaction in heterogeneous reaction of coal</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The diffusion of oxygen (O 2 ) plays an important role in the heterogeneous oxidation of coal and biomass, but is inadequately understood. This work aims to study the influence of intra-, inter-particle and external O 2 diffusions on the high-temperature heterogeneous oxidation using the TG-FTIR technique and two bituminous coals as example. Results show that coal sample of higher reactivity and smaller pore surface area is more sensitive to the O 2 diffusion. Specifically, increasing the size of particle, the reduced intra-particle (Knudsen) diffusion can reduce the conversion rate by 10–50%. While increasing the size of sample, the effective inter-particle diffusion shows a linear decrease. Comparatively, the influences of inter-particle and external diffusion in the TG scale (&lt;5 mm) are weaker. For large TG samples (&gt;10 mg) and low heating rates (2 K min −1 ), the influence of thermal diffusion is strong enough to cause a thermal leap for the oxidation. Kinetic analysis using n th-order model-fitting method predicts the apparent activation energy ( E ) decreases with increasing reactivity. However, both model-free and Kissinger’s methods show E increases with increasing reactivity, against the physical definition of E . This work may help understand the diffusion–kinetics interaction in the fuel conversion and smoldering fire of coal and biomass.</description><subject>Activation analysis</subject><subject>Activation energy</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Bituminous coal</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coal</subject><subject>Conversion</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Energy consumption</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Oxidation</subject><subject>Particle diffusion</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Reaction kinetics</subject><subject>Reactivity</subject><subject>Smoldering</subject><subject>Thermal diffusion</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kbtOBSEURSdGE58fYDeJlcUojxkYSmN8JSYmPjoTgszhil7hCkxy7fwH_9Av8Zix0MJQsDmsDRx2Ve1SckAJkYeZEiV5Q6hsBO9FQ1eqDdr1fcMUE6uoOWpBO7Jebeb8RAhRitCN6v5kuYDkXyAUM69zGYe3Ooa6PEI9eOfG7GP4fP949gGKt7n2oUAytmAZdf0IuIwzCBDHXCf42YmuttHMt6s1Z-YZdn7mreru9OT2-Ly5vDq7OD66bGzLRGnoQBWwHmjHhWUgOmOIYA_KtoOUKLltjZOm5x0fDBsGQlqhDLTCOiNBAt-q9qZzFym-jpCLfopjCnilptg-lZy1BKmDiZqZOWgfXCzYCY4BXryNAZzH-lGrlOJMcYmG_T8GZAosy8yMOeuLm-u_LJ1Ym2LOCZxe4K-a9KYp0d8J6SkhjQnp74Q0RQ-bPBnZMIP069n_mr4AlmGU2A</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Song, Zeyang</creator><creator>Huang, Xinyan</creator><creator>Luo, Minggang</creator><creator>Gong, Junhui</creator><creator>Pan, Xuhai</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170901</creationdate><title>Experimental study on the diffusion–kinetics interaction in heterogeneous reaction of coal</title><author>Song, Zeyang ; Huang, Xinyan ; Luo, Minggang ; Gong, Junhui ; Pan, Xuhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1d19e28e1536c2e65aa062b9c4d77a063c4af7a8353da2dd00469ae46cfa7e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation analysis</topic><topic>Activation energy</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Bituminous coal</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coal</topic><topic>Conversion</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Energy consumption</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Oxidation</topic><topic>Particle diffusion</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Reaction kinetics</topic><topic>Reactivity</topic><topic>Smoldering</topic><topic>Thermal diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zeyang</creatorcontrib><creatorcontrib>Huang, Xinyan</creatorcontrib><creatorcontrib>Luo, Minggang</creatorcontrib><creatorcontrib>Gong, Junhui</creatorcontrib><creatorcontrib>Pan, Xuhai</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zeyang</au><au>Huang, Xinyan</au><au>Luo, Minggang</au><au>Gong, Junhui</au><au>Pan, Xuhai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on the diffusion–kinetics interaction in heterogeneous reaction of coal</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>129</volume><issue>3</issue><spage>1625</spage><epage>1637</epage><pages>1625-1637</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The diffusion of oxygen (O 2 ) plays an important role in the heterogeneous oxidation of coal and biomass, but is inadequately understood. This work aims to study the influence of intra-, inter-particle and external O 2 diffusions on the high-temperature heterogeneous oxidation using the TG-FTIR technique and two bituminous coals as example. Results show that coal sample of higher reactivity and smaller pore surface area is more sensitive to the O 2 diffusion. Specifically, increasing the size of particle, the reduced intra-particle (Knudsen) diffusion can reduce the conversion rate by 10–50%. While increasing the size of sample, the effective inter-particle diffusion shows a linear decrease. Comparatively, the influences of inter-particle and external diffusion in the TG scale (&lt;5 mm) are weaker. For large TG samples (&gt;10 mg) and low heating rates (2 K min −1 ), the influence of thermal diffusion is strong enough to cause a thermal leap for the oxidation. Kinetic analysis using n th-order model-fitting method predicts the apparent activation energy ( E ) decreases with increasing reactivity. However, both model-free and Kissinger’s methods show E increases with increasing reactivity, against the physical definition of E . This work may help understand the diffusion–kinetics interaction in the fuel conversion and smoldering fire of coal and biomass.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6386-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1625-1637
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_1926173240
source SpringerLink Journals
subjects Activation analysis
Activation energy
Analysis
Analytical Chemistry
Bituminous coal
Chemistry
Chemistry and Materials Science
Coal
Conversion
Diffusion
Diffusion rate
Energy consumption
Inorganic Chemistry
Measurement Science and Instrumentation
Oxidation
Particle diffusion
Physical Chemistry
Polymer Sciences
Reaction kinetics
Reactivity
Smoldering
Thermal diffusion
title Experimental study on the diffusion–kinetics interaction in heterogeneous reaction of coal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20the%20diffusion%E2%80%93kinetics%20interaction%20in%20heterogeneous%20reaction%20of%20coal&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Song,%20Zeyang&rft.date=2017-09-01&rft.volume=129&rft.issue=3&rft.spage=1625&rft.epage=1637&rft.pages=1625-1637&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6386-1&rft_dat=%3Cgale_proqu%3EA499932937%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926173240&rft_id=info:pmid/&rft_galeid=A499932937&rfr_iscdi=true