Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles

In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2017-09, Vol.129 (3), p.1855-1864
Hauptverfasser: Bidabadi, Mehdi, Biouki, Saeed Amrollahy, Afzalabadi, Abolfazl, Dehghan, Amir Arsalan, Poorfar, Alireza Khoeini, Rouboa, Abel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1864
container_issue 3
container_start_page 1855
container_title Journal of thermal analysis and calorimetry
container_volume 129
creator Bidabadi, Mehdi
Biouki, Saeed Amrollahy
Afzalabadi, Abolfazl
Dehghan, Amir Arsalan
Poorfar, Alireza Khoeini
Rouboa, Abel
description In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.
doi_str_mv 10.1007/s10973-017-6338-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1926173239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499932892</galeid><sourcerecordid>A499932892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</originalsourceid><addsrcrecordid>eNp1kUtPFzEUxSdGEhH8AO6auGIx0Mc82iUhiiQYE8B1c-m0Y8lMO7SdKHs-uPfPCJGF6aKP_M7pvfdU1UdGjxml_UlmVPWipqyvOyFkrd5U-6yVsuaKd2_xLPDcsZa-q97nfEcpVYqy_erxWxzs5MNIlhQXGKH4GAiEgdjfxQfzdI2OwLTOPqwzGdZcyAKpeDPZTDzCJFnYwNkOHplfvvwkeUEvmKYHsgbvYkKpzyX52_XZ88XlsNpzMGX74e9-UP348vnm7Gt9-f384uz0sjYN70oNILgD3rTSDXLoKbWtUB0I4awzDTOghGhF21gu2wb7lULR21b2pkeZMp04qD5tvtjr_Wpz0XdxTQG_1AzHxHrBhULqeKNGmKz2wcWSwOAa7OxNDNZ5fD9tlFKCS8VRcPRKgEzB6Y2w5qwvrq9es2xjTYo5J-v0kvwM6UEzqndJ6i1JjUnqXZJ6VxDfNBnZMNr0T9n_Ff0BUQeicw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926173239</pqid></control><display><type>article</type><title>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bidabadi, Mehdi ; Biouki, Saeed Amrollahy ; Afzalabadi, Abolfazl ; Dehghan, Amir Arsalan ; Poorfar, Alireza Khoeini ; Rouboa, Abel</creator><creatorcontrib>Bidabadi, Mehdi ; Biouki, Saeed Amrollahy ; Afzalabadi, Abolfazl ; Dehghan, Amir Arsalan ; Poorfar, Alireza Khoeini ; Rouboa, Abel</creatorcontrib><description>In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6338-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Combustion ; Dust ; Extinction ; Heat ; Heat loss ; Heating ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Propagation ; Quenching (cooling) ; Superposition (mathematics) ; Temperature distribution ; Wall temperature ; Walls</subject><ispartof>Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1855-1864</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</citedby><cites>FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6338-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6338-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Bidabadi, Mehdi</creatorcontrib><creatorcontrib>Biouki, Saeed Amrollahy</creatorcontrib><creatorcontrib>Afzalabadi, Abolfazl</creatorcontrib><creatorcontrib>Dehghan, Amir Arsalan</creatorcontrib><creatorcontrib>Poorfar, Alireza Khoeini</creatorcontrib><creatorcontrib>Rouboa, Abel</creatorcontrib><title>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.</description><subject>Aluminum</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Dust</subject><subject>Extinction</subject><subject>Heat</subject><subject>Heat loss</subject><subject>Heating</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Propagation</subject><subject>Quenching (cooling)</subject><subject>Superposition (mathematics)</subject><subject>Temperature distribution</subject><subject>Wall temperature</subject><subject>Walls</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPFzEUxSdGEhH8AO6auGIx0Mc82iUhiiQYE8B1c-m0Y8lMO7SdKHs-uPfPCJGF6aKP_M7pvfdU1UdGjxml_UlmVPWipqyvOyFkrd5U-6yVsuaKd2_xLPDcsZa-q97nfEcpVYqy_erxWxzs5MNIlhQXGKH4GAiEgdjfxQfzdI2OwLTOPqwzGdZcyAKpeDPZTDzCJFnYwNkOHplfvvwkeUEvmKYHsgbvYkKpzyX52_XZ88XlsNpzMGX74e9-UP348vnm7Gt9-f384uz0sjYN70oNILgD3rTSDXLoKbWtUB0I4awzDTOghGhF21gu2wb7lULR21b2pkeZMp04qD5tvtjr_Wpz0XdxTQG_1AzHxHrBhULqeKNGmKz2wcWSwOAa7OxNDNZ5fD9tlFKCS8VRcPRKgEzB6Y2w5qwvrq9es2xjTYo5J-v0kvwM6UEzqndJ6i1JjUnqXZJ6VxDfNBnZMNr0T9n_Ff0BUQeicw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bidabadi, Mehdi</creator><creator>Biouki, Saeed Amrollahy</creator><creator>Afzalabadi, Abolfazl</creator><creator>Dehghan, Amir Arsalan</creator><creator>Poorfar, Alireza Khoeini</creator><creator>Rouboa, Abel</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170901</creationdate><title>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</title><author>Bidabadi, Mehdi ; Biouki, Saeed Amrollahy ; Afzalabadi, Abolfazl ; Dehghan, Amir Arsalan ; Poorfar, Alireza Khoeini ; Rouboa, Abel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Dust</topic><topic>Extinction</topic><topic>Heat</topic><topic>Heat loss</topic><topic>Heating</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Propagation</topic><topic>Quenching (cooling)</topic><topic>Superposition (mathematics)</topic><topic>Temperature distribution</topic><topic>Wall temperature</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bidabadi, Mehdi</creatorcontrib><creatorcontrib>Biouki, Saeed Amrollahy</creatorcontrib><creatorcontrib>Afzalabadi, Abolfazl</creatorcontrib><creatorcontrib>Dehghan, Amir Arsalan</creatorcontrib><creatorcontrib>Poorfar, Alireza Khoeini</creatorcontrib><creatorcontrib>Rouboa, Abel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bidabadi, Mehdi</au><au>Biouki, Saeed Amrollahy</au><au>Afzalabadi, Abolfazl</au><au>Dehghan, Amir Arsalan</au><au>Poorfar, Alireza Khoeini</au><au>Rouboa, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>129</volume><issue>3</issue><spage>1855</spage><epage>1864</epage><pages>1855-1864</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6338-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1855-1864
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_1926173239
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Combustion
Dust
Extinction
Heat
Heat loss
Heating
Inorganic Chemistry
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Propagation
Quenching (cooling)
Superposition (mathematics)
Temperature distribution
Wall temperature
Walls
title Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20propagation%20and%20extinction%20of%20aluminum%20dust%20particles%20in%20a%20reaction%20medium%20with%20spatially%20uniform%20distribution%20of%20particles&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Bidabadi,%20Mehdi&rft.date=2017-09-01&rft.volume=129&rft.issue=3&rft.spage=1855&rft.epage=1864&rft.pages=1855-1864&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6338-9&rft_dat=%3Cgale_proqu%3EA499932892%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926173239&rft_id=info:pmid/&rft_galeid=A499932892&rfr_iscdi=true