Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles
In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the s...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2017-09, Vol.129 (3), p.1855-1864 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1864 |
---|---|
container_issue | 3 |
container_start_page | 1855 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 129 |
creator | Bidabadi, Mehdi Biouki, Saeed Amrollahy Afzalabadi, Abolfazl Dehghan, Amir Arsalan Poorfar, Alireza Khoeini Rouboa, Abel |
description | In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased. |
doi_str_mv | 10.1007/s10973-017-6338-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1926173239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499932892</galeid><sourcerecordid>A499932892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</originalsourceid><addsrcrecordid>eNp1kUtPFzEUxSdGEhH8AO6auGIx0Mc82iUhiiQYE8B1c-m0Y8lMO7SdKHs-uPfPCJGF6aKP_M7pvfdU1UdGjxml_UlmVPWipqyvOyFkrd5U-6yVsuaKd2_xLPDcsZa-q97nfEcpVYqy_erxWxzs5MNIlhQXGKH4GAiEgdjfxQfzdI2OwLTOPqwzGdZcyAKpeDPZTDzCJFnYwNkOHplfvvwkeUEvmKYHsgbvYkKpzyX52_XZ88XlsNpzMGX74e9-UP348vnm7Gt9-f384uz0sjYN70oNILgD3rTSDXLoKbWtUB0I4awzDTOghGhF21gu2wb7lULR21b2pkeZMp04qD5tvtjr_Wpz0XdxTQG_1AzHxHrBhULqeKNGmKz2wcWSwOAa7OxNDNZ5fD9tlFKCS8VRcPRKgEzB6Y2w5qwvrq9es2xjTYo5J-v0kvwM6UEzqndJ6i1JjUnqXZJ6VxDfNBnZMNr0T9n_Ff0BUQeicw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926173239</pqid></control><display><type>article</type><title>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bidabadi, Mehdi ; Biouki, Saeed Amrollahy ; Afzalabadi, Abolfazl ; Dehghan, Amir Arsalan ; Poorfar, Alireza Khoeini ; Rouboa, Abel</creator><creatorcontrib>Bidabadi, Mehdi ; Biouki, Saeed Amrollahy ; Afzalabadi, Abolfazl ; Dehghan, Amir Arsalan ; Poorfar, Alireza Khoeini ; Rouboa, Abel</creatorcontrib><description>In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6338-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Combustion ; Dust ; Extinction ; Heat ; Heat loss ; Heating ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Propagation ; Quenching (cooling) ; Superposition (mathematics) ; Temperature distribution ; Wall temperature ; Walls</subject><ispartof>Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1855-1864</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</citedby><cites>FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6338-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6338-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Bidabadi, Mehdi</creatorcontrib><creatorcontrib>Biouki, Saeed Amrollahy</creatorcontrib><creatorcontrib>Afzalabadi, Abolfazl</creatorcontrib><creatorcontrib>Dehghan, Amir Arsalan</creatorcontrib><creatorcontrib>Poorfar, Alireza Khoeini</creatorcontrib><creatorcontrib>Rouboa, Abel</creatorcontrib><title>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.</description><subject>Aluminum</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Dust</subject><subject>Extinction</subject><subject>Heat</subject><subject>Heat loss</subject><subject>Heating</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Propagation</subject><subject>Quenching (cooling)</subject><subject>Superposition (mathematics)</subject><subject>Temperature distribution</subject><subject>Wall temperature</subject><subject>Walls</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kUtPFzEUxSdGEhH8AO6auGIx0Mc82iUhiiQYE8B1c-m0Y8lMO7SdKHs-uPfPCJGF6aKP_M7pvfdU1UdGjxml_UlmVPWipqyvOyFkrd5U-6yVsuaKd2_xLPDcsZa-q97nfEcpVYqy_erxWxzs5MNIlhQXGKH4GAiEgdjfxQfzdI2OwLTOPqwzGdZcyAKpeDPZTDzCJFnYwNkOHplfvvwkeUEvmKYHsgbvYkKpzyX52_XZ88XlsNpzMGX74e9-UP348vnm7Gt9-f384uz0sjYN70oNILgD3rTSDXLoKbWtUB0I4awzDTOghGhF21gu2wb7lULR21b2pkeZMp04qD5tvtjr_Wpz0XdxTQG_1AzHxHrBhULqeKNGmKz2wcWSwOAa7OxNDNZ5fD9tlFKCS8VRcPRKgEzB6Y2w5qwvrq9es2xjTYo5J-v0kvwM6UEzqndJ6i1JjUnqXZJ6VxDfNBnZMNr0T9n_Ff0BUQeicw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bidabadi, Mehdi</creator><creator>Biouki, Saeed Amrollahy</creator><creator>Afzalabadi, Abolfazl</creator><creator>Dehghan, Amir Arsalan</creator><creator>Poorfar, Alireza Khoeini</creator><creator>Rouboa, Abel</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170901</creationdate><title>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</title><author>Bidabadi, Mehdi ; Biouki, Saeed Amrollahy ; Afzalabadi, Abolfazl ; Dehghan, Amir Arsalan ; Poorfar, Alireza Khoeini ; Rouboa, Abel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-aa32fa2458fd8d700e5396a33fefc41ca9335354e28543888390b587c72fa9c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Dust</topic><topic>Extinction</topic><topic>Heat</topic><topic>Heat loss</topic><topic>Heating</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Propagation</topic><topic>Quenching (cooling)</topic><topic>Superposition (mathematics)</topic><topic>Temperature distribution</topic><topic>Wall temperature</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bidabadi, Mehdi</creatorcontrib><creatorcontrib>Biouki, Saeed Amrollahy</creatorcontrib><creatorcontrib>Afzalabadi, Abolfazl</creatorcontrib><creatorcontrib>Dehghan, Amir Arsalan</creatorcontrib><creatorcontrib>Poorfar, Alireza Khoeini</creatorcontrib><creatorcontrib>Rouboa, Abel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bidabadi, Mehdi</au><au>Biouki, Saeed Amrollahy</au><au>Afzalabadi, Abolfazl</au><au>Dehghan, Amir Arsalan</au><au>Poorfar, Alireza Khoeini</au><au>Rouboa, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>129</volume><issue>3</issue><spage>1855</spage><epage>1864</epage><pages>1855-1864</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>In this paper, propagation and quenching of aluminum dust flame in narrow channels with infinite length and constant width are investigated. Particles are distributed uniformly in three-dimensional space in a quiescent reaction medium. The combustion of a single particle was first studied, and the solution is presented. Each burning/burned particle is considered as a heat source, and the amount of heat loss to the channel walls is assumed as sink source. Based on the superposition principle, the space–time temperature distribution of particles and the heat loss to the walls are estimated based on the generated code. In this study, the amount of heat loss and quenching distance have been investigated as a function of aluminum dust concentration and particle diameter. The effects of preheating of the walls are also studied on quenching distance and heat loss. The estimated results are compared with the experimental data and show a fairly good agreement. The initial wall temperature affects the heat loss, and with the increase in the wall’s initial temperature, the value of quenching distance will be decreased.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6338-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1855-1864 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_1926173239 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum Analytical Chemistry Chemistry Chemistry and Materials Science Combustion Dust Extinction Heat Heat loss Heating Inorganic Chemistry Measurement Science and Instrumentation Physical Chemistry Polymer Sciences Propagation Quenching (cooling) Superposition (mathematics) Temperature distribution Wall temperature Walls |
title | Modeling propagation and extinction of aluminum dust particles in a reaction medium with spatially uniform distribution of particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20propagation%20and%20extinction%20of%20aluminum%20dust%20particles%20in%20a%20reaction%20medium%20with%20spatially%20uniform%20distribution%20of%20particles&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Bidabadi,%20Mehdi&rft.date=2017-09-01&rft.volume=129&rft.issue=3&rft.spage=1855&rft.epage=1864&rft.pages=1855-1864&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6338-9&rft_dat=%3Cgale_proqu%3EA499932892%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926173239&rft_id=info:pmid/&rft_galeid=A499932892&rfr_iscdi=true |