Pyrolysis and combustion of sugarcane bagasse

The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2017-09, Vol.129 (3), p.1813-1822
Hauptverfasser: Morais, L. C., Maia, A. A. D., Guandique, M. E. G., Rosa, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1822
container_issue 3
container_start_page 1813
container_title Journal of thermal analysis and calorimetry
container_volume 129
creator Morais, L. C.
Maia, A. A. D.
Guandique, M. E. G.
Rosa, A. H.
description The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min −1 . The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent E α represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.
doi_str_mv 10.1007/s10973-017-6329-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1926171158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499932914</galeid><sourcerecordid>A499932914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</originalsourceid><addsrcrecordid>eNp1kE1rAyEQhqW00DTtD-htoaceTGfcXY3HEPoRCLT04yyu0WVDsqa6C8m_r2F7aA7Fg4M-7-g8hNwiTBBAPEQEKXIKKCjPmaT7MzLCcjqlTDJ-nuo81RxLuCRXMa4BQErAEaFvh-A3h9jETLerzPht1ceu8W3mXRb7WgejW5tVutYx2mty4fQm2pvffUy-nh4_5y90-fq8mM-W1BSMd7RwFboqZ6xkzk6hLFaGc5GLkjEjCpM7i1MHLNfASs41Z1yU4DRwSHfIdT4md0PfXfDfvY2dWvs-tOlJhWkeFJhmS9RkoGq9sappne-CNmmt7LYxvrWuSeezQkqZlGCRAvcngcR0dt_Vuo9RLT7eT1kcWBN8jME6tQvNVoeDQlBH5WpQrpJydVSu9inDhkxMbFvb8Ofb_4Z-ABbBgUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926171158</pqid></control><display><type>article</type><title>Pyrolysis and combustion of sugarcane bagasse</title><source>Springer Nature - Complete Springer Journals</source><creator>Morais, L. C. ; Maia, A. A. D. ; Guandique, M. E. G. ; Rosa, A. H.</creator><creatorcontrib>Morais, L. C. ; Maia, A. A. D. ; Guandique, M. E. G. ; Rosa, A. H.</creatorcontrib><description>The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min −1 . The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent E α represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6329-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Analysis ; Analytical Chemistry ; Bagasse ; Biomass ; Biomass energy ; Cellulose ; Chemistry ; Chemistry and Materials Science ; Combustion ; Degradation ; Devolatilization ; Inorganic Chemistry ; Iron ; Lignin ; Magnesium ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Pyrolysis ; Renewable energy ; Sugarcane ; Thermodynamic properties ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1813-1822</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</citedby><cites>FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6329-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6329-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Morais, L. C.</creatorcontrib><creatorcontrib>Maia, A. A. D.</creatorcontrib><creatorcontrib>Guandique, M. E. G.</creatorcontrib><creatorcontrib>Rosa, A. H.</creatorcontrib><title>Pyrolysis and combustion of sugarcane bagasse</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min −1 . The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent E α represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Bagasse</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Degradation</subject><subject>Devolatilization</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Lignin</subject><subject>Magnesium</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Renewable energy</subject><subject>Sugarcane</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rAyEQhqW00DTtD-htoaceTGfcXY3HEPoRCLT04yyu0WVDsqa6C8m_r2F7aA7Fg4M-7-g8hNwiTBBAPEQEKXIKKCjPmaT7MzLCcjqlTDJ-nuo81RxLuCRXMa4BQErAEaFvh-A3h9jETLerzPht1ceu8W3mXRb7WgejW5tVutYx2mty4fQm2pvffUy-nh4_5y90-fq8mM-W1BSMd7RwFboqZ6xkzk6hLFaGc5GLkjEjCpM7i1MHLNfASs41Z1yU4DRwSHfIdT4md0PfXfDfvY2dWvs-tOlJhWkeFJhmS9RkoGq9sappne-CNmmt7LYxvrWuSeezQkqZlGCRAvcngcR0dt_Vuo9RLT7eT1kcWBN8jME6tQvNVoeDQlBH5WpQrpJydVSu9inDhkxMbFvb8Ofb_4Z-ABbBgUQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Morais, L. C.</creator><creator>Maia, A. A. D.</creator><creator>Guandique, M. E. G.</creator><creator>Rosa, A. H.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170901</creationdate><title>Pyrolysis and combustion of sugarcane bagasse</title><author>Morais, L. C. ; Maia, A. A. D. ; Guandique, M. E. G. ; Rosa, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Bagasse</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Degradation</topic><topic>Devolatilization</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Lignin</topic><topic>Magnesium</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Renewable energy</topic><topic>Sugarcane</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morais, L. C.</creatorcontrib><creatorcontrib>Maia, A. A. D.</creatorcontrib><creatorcontrib>Guandique, M. E. G.</creatorcontrib><creatorcontrib>Rosa, A. H.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morais, L. C.</au><au>Maia, A. A. D.</au><au>Guandique, M. E. G.</au><au>Rosa, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolysis and combustion of sugarcane bagasse</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>129</volume><issue>3</issue><spage>1813</spage><epage>1822</epage><pages>1813-1822</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min −1 . The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent E α represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6329-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1813-1822
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_1926171158
source Springer Nature - Complete Springer Journals
subjects Aluminum
Analysis
Analytical Chemistry
Bagasse
Biomass
Biomass energy
Cellulose
Chemistry
Chemistry and Materials Science
Combustion
Degradation
Devolatilization
Inorganic Chemistry
Iron
Lignin
Magnesium
Measurement Science and Instrumentation
Physical Chemistry
Polymer Sciences
Pyrolysis
Renewable energy
Sugarcane
Thermodynamic properties
Thermogravimetric analysis
title Pyrolysis and combustion of sugarcane bagasse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolysis%20and%20combustion%20of%20sugarcane%20bagasse&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Morais,%20L.%20C.&rft.date=2017-09-01&rft.volume=129&rft.issue=3&rft.spage=1813&rft.epage=1822&rft.pages=1813-1822&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6329-x&rft_dat=%3Cgale_proqu%3EA499932914%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926171158&rft_id=info:pmid/&rft_galeid=A499932914&rfr_iscdi=true