Pyrolysis and combustion of sugarcane bagasse
The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and b...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2017-09, Vol.129 (3), p.1813-1822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1822 |
---|---|
container_issue | 3 |
container_start_page | 1813 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 129 |
creator | Morais, L. C. Maia, A. A. D. Guandique, M. E. G. Rosa, A. H. |
description | The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min
−1
. The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent
E
α
represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron. |
doi_str_mv | 10.1007/s10973-017-6329-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1926171158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499932914</galeid><sourcerecordid>A499932914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</originalsourceid><addsrcrecordid>eNp1kE1rAyEQhqW00DTtD-htoaceTGfcXY3HEPoRCLT04yyu0WVDsqa6C8m_r2F7aA7Fg4M-7-g8hNwiTBBAPEQEKXIKKCjPmaT7MzLCcjqlTDJ-nuo81RxLuCRXMa4BQErAEaFvh-A3h9jETLerzPht1ceu8W3mXRb7WgejW5tVutYx2mty4fQm2pvffUy-nh4_5y90-fq8mM-W1BSMd7RwFboqZ6xkzk6hLFaGc5GLkjEjCpM7i1MHLNfASs41Z1yU4DRwSHfIdT4md0PfXfDfvY2dWvs-tOlJhWkeFJhmS9RkoGq9sappne-CNmmt7LYxvrWuSeezQkqZlGCRAvcngcR0dt_Vuo9RLT7eT1kcWBN8jME6tQvNVoeDQlBH5WpQrpJydVSu9inDhkxMbFvb8Ofb_4Z-ABbBgUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926171158</pqid></control><display><type>article</type><title>Pyrolysis and combustion of sugarcane bagasse</title><source>Springer Nature - Complete Springer Journals</source><creator>Morais, L. C. ; Maia, A. A. D. ; Guandique, M. E. G. ; Rosa, A. H.</creator><creatorcontrib>Morais, L. C. ; Maia, A. A. D. ; Guandique, M. E. G. ; Rosa, A. H.</creatorcontrib><description>The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min
−1
. The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent
E
α
represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6329-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aluminum ; Analysis ; Analytical Chemistry ; Bagasse ; Biomass ; Biomass energy ; Cellulose ; Chemistry ; Chemistry and Materials Science ; Combustion ; Degradation ; Devolatilization ; Inorganic Chemistry ; Iron ; Lignin ; Magnesium ; Measurement Science and Instrumentation ; Physical Chemistry ; Polymer Sciences ; Pyrolysis ; Renewable energy ; Sugarcane ; Thermodynamic properties ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1813-1822</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</citedby><cites>FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6329-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6329-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Morais, L. C.</creatorcontrib><creatorcontrib>Maia, A. A. D.</creatorcontrib><creatorcontrib>Guandique, M. E. G.</creatorcontrib><creatorcontrib>Rosa, A. H.</creatorcontrib><title>Pyrolysis and combustion of sugarcane bagasse</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min
−1
. The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent
E
α
represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.</description><subject>Aluminum</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Bagasse</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Degradation</subject><subject>Devolatilization</subject><subject>Inorganic Chemistry</subject><subject>Iron</subject><subject>Lignin</subject><subject>Magnesium</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Renewable energy</subject><subject>Sugarcane</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1rAyEQhqW00DTtD-htoaceTGfcXY3HEPoRCLT04yyu0WVDsqa6C8m_r2F7aA7Fg4M-7-g8hNwiTBBAPEQEKXIKKCjPmaT7MzLCcjqlTDJ-nuo81RxLuCRXMa4BQErAEaFvh-A3h9jETLerzPht1ceu8W3mXRb7WgejW5tVutYx2mty4fQm2pvffUy-nh4_5y90-fq8mM-W1BSMd7RwFboqZ6xkzk6hLFaGc5GLkjEjCpM7i1MHLNfASs41Z1yU4DRwSHfIdT4md0PfXfDfvY2dWvs-tOlJhWkeFJhmS9RkoGq9sappne-CNmmt7LYxvrWuSeezQkqZlGCRAvcngcR0dt_Vuo9RLT7eT1kcWBN8jME6tQvNVoeDQlBH5WpQrpJydVSu9inDhkxMbFvb8Ofb_4Z-ABbBgUQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Morais, L. C.</creator><creator>Maia, A. A. D.</creator><creator>Guandique, M. E. G.</creator><creator>Rosa, A. H.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170901</creationdate><title>Pyrolysis and combustion of sugarcane bagasse</title><author>Morais, L. C. ; Maia, A. A. D. ; Guandique, M. E. G. ; Rosa, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4fb1fb32252fe8054dc66737522c74c3fe18f023a02566a626750fa060c3f16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Bagasse</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Degradation</topic><topic>Devolatilization</topic><topic>Inorganic Chemistry</topic><topic>Iron</topic><topic>Lignin</topic><topic>Magnesium</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Renewable energy</topic><topic>Sugarcane</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morais, L. C.</creatorcontrib><creatorcontrib>Maia, A. A. D.</creatorcontrib><creatorcontrib>Guandique, M. E. G.</creatorcontrib><creatorcontrib>Rosa, A. H.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morais, L. C.</au><au>Maia, A. A. D.</au><au>Guandique, M. E. G.</au><au>Rosa, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolysis and combustion of sugarcane bagasse</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>129</volume><issue>3</issue><spage>1813</spage><epage>1822</epage><pages>1813-1822</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The inadequate and indiscriminate disposal of sugarcane bagasse (SCB) has received much attention. The exploration of bioenergy properties of biomasses and its biochars play an important role in achieving their utilization. In this context, understanding thermal conversion processes of biomass and biochars it is crucial to use them at bioenergy production. The aim of this study was to investigate thermal behavior of SCB biomass residue, as well as his biochar, by thermogravimetric analysis (TG), including thermodynamic parameters for non-isothermal analyses using Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS) and Friedman, kinetic isoconversional methods. Thermal analyses were conducted under oxidative and inert atmosphere at heating rates of 5, 7.5 and 10 °C min
−1
. The hemicellulose maximum mass loss rate was at 250 °C, cellulose at 330 °C and lignin decomposition from 190 to 500 °C, but the maximum mass loss rate at 430 °C, the devolatilization was at ~200 °C. The variation of apparent
E
α
represents single-step kinetics on the degradation process and OFW model is in better accordance with the experimental data and satisfactorily described the complexity of degradation process. SEM/EDX analyses showed carbon, oxygen, aluminum, magnesium and iron.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6329-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2017-09, Vol.129 (3), p.1813-1822 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_1926171158 |
source | Springer Nature - Complete Springer Journals |
subjects | Aluminum Analysis Analytical Chemistry Bagasse Biomass Biomass energy Cellulose Chemistry Chemistry and Materials Science Combustion Degradation Devolatilization Inorganic Chemistry Iron Lignin Magnesium Measurement Science and Instrumentation Physical Chemistry Polymer Sciences Pyrolysis Renewable energy Sugarcane Thermodynamic properties Thermogravimetric analysis |
title | Pyrolysis and combustion of sugarcane bagasse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolysis%20and%20combustion%20of%20sugarcane%20bagasse&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Morais,%20L.%20C.&rft.date=2017-09-01&rft.volume=129&rft.issue=3&rft.spage=1813&rft.epage=1822&rft.pages=1813-1822&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6329-x&rft_dat=%3Cgale_proqu%3EA499932914%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926171158&rft_id=info:pmid/&rft_galeid=A499932914&rfr_iscdi=true |