Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES
The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2017-05, Vol.184 (5), p.1555-1564 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1564 |
---|---|
container_issue | 5 |
container_start_page | 1555 |
container_title | Mikrochimica acta (1966) |
container_volume | 184 |
creator | Safari, Meysam Yamini, Yadollah Masoomi, Mohammad Yaser Morsali, Ali Mani-Varnosfaderani, Ahmad |
description | The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (in comparison to TMU-9 which does not have an azine group) and the role of void spaces of these MOFs toward the adsorption of metal ions also are evaluated. The studies reveal that TMU-8 has a better adsorption capability than TMU-9. A magnetic TMU-8 was then fabricated by in-situ synthesis of a magnetic core-shell nanocomposite. The material was chosen as an efficient sorbent for the preconcentration of the above metal ions, followed by their determination by flow injection inductively coupled plasma atomic emission spectrometry. The assay was optimized using a combination of central composite design (CCD) and a Bayesian regularized artificial neural network (BRANN) technique. Under optimal conditions, the preconcentration factors are in the range between 66 and 232, and detection limits are as low as 0.3 to 1 μg ⋅L
−1
. The relative standard deviations are |
doi_str_mv | 10.1007/s00604-017-2133-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1925895454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715059816</galeid><sourcerecordid>A715059816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7dcfba8b3334f4bb65029346d99bfd8a23ceca45aca46e7af009c577ae4203cc3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSNEJZaWD8DNEmeX8f_kuFoVWqkIpJaz5TjjbcrGLnYW2CPfHIdw4AKyZI9H7_dszWua1wwuGYB5WwA0SArMUM6EoOJZs2FSaKrAiOfNBoBrKrThL5qXpTxCFWouN83PD24fcR49mXB2B5ry3sV6C9lN-D3lL4WElMn8gAR_zNn5eUyRpECWGomb0jHOZWk8oPt2Wl1I1RTylMeFTAs8ZjLgjHkao_vt0J_Ize4T3V7dXTRnwR0Kvvpznjef313d767p7cf3N7vtLfWiFTM1gw-9a3shhAyy77UC3gmph67rw9A6Ljx6J5Wrm0bjAkDnlTEOJQfhvThv3qy-Tzl9PWKZ7WM65liftKzjqu2UVPK_qraDFiR0vKouV9XeHdCOMaRlHHUNOI0-RQxj7W8NU6C6lukKsBXwOZWSMdg6ncnlk2VglwDtGqCtudglQCsqw1emVG3cY_7rK_-EfgGNAJ5m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925895454</pqid></control><display><type>article</type><title>Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES</title><source>SpringerLink Journals - AutoHoldings</source><creator>Safari, Meysam ; Yamini, Yadollah ; Masoomi, Mohammad Yaser ; Morsali, Ali ; Mani-Varnosfaderani, Ahmad</creator><creatorcontrib>Safari, Meysam ; Yamini, Yadollah ; Masoomi, Mohammad Yaser ; Morsali, Ali ; Mani-Varnosfaderani, Ahmad</creatorcontrib><description>The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (in comparison to TMU-9 which does not have an azine group) and the role of void spaces of these MOFs toward the adsorption of metal ions also are evaluated. The studies reveal that TMU-8 has a better adsorption capability than TMU-9. A magnetic TMU-8 was then fabricated by in-situ synthesis of a magnetic core-shell nanocomposite. The material was chosen as an efficient sorbent for the preconcentration of the above metal ions, followed by their determination by flow injection inductively coupled plasma atomic emission spectrometry. The assay was optimized using a combination of central composite design (CCD) and a Bayesian regularized artificial neural network (BRANN) technique. Under optimal conditions, the preconcentration factors are in the range between 66 and 232, and detection limits are as low as 0.3 to 1 μg ⋅L
−1
. The relative standard deviations are <6.4% (for
n
= 3; at 50 μg ⋅ L
−1
). Real samples were analyzed, and the results demonstrate that such core-shell magnetic microspheres are promising sorbents for rapid and efficient extraction of heavy metal ions from complex samples.
Graphical abstract
New magnetic metal organic frame works were synthesized and applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III) and Mn(II).</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-017-2133-3</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Adsorption ; Analysis ; Analytical Chemistry ; Aqueous solutions ; Artificial neural networks ; Atomic emission spectroscopy ; Bayesian analysis ; Cadmium compounds ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coordination compounds ; Copper ; Design optimization ; Emission analysis ; Extraction ; Heavy metals ; Inductively coupled plasma ; Ions ; Lead ; Magnetic cores ; Manganese ; Metal ions ; Metal-organic frameworks ; Microengineering ; Microspheres ; Nanochemistry ; Nanocomposites ; Nanotechnology ; Neural networks ; Nickel ; Original Paper ; Particulate composites ; Sorbents ; Spectrometry</subject><ispartof>Mikrochimica acta (1966), 2017-05, Vol.184 (5), p.1555-1564</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Microchimica Acta is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7dcfba8b3334f4bb65029346d99bfd8a23ceca45aca46e7af009c577ae4203cc3</citedby><cites>FETCH-LOGICAL-c383t-7dcfba8b3334f4bb65029346d99bfd8a23ceca45aca46e7af009c577ae4203cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-017-2133-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-017-2133-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Safari, Meysam</creatorcontrib><creatorcontrib>Yamini, Yadollah</creatorcontrib><creatorcontrib>Masoomi, Mohammad Yaser</creatorcontrib><creatorcontrib>Morsali, Ali</creatorcontrib><creatorcontrib>Mani-Varnosfaderani, Ahmad</creatorcontrib><title>Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (in comparison to TMU-9 which does not have an azine group) and the role of void spaces of these MOFs toward the adsorption of metal ions also are evaluated. The studies reveal that TMU-8 has a better adsorption capability than TMU-9. A magnetic TMU-8 was then fabricated by in-situ synthesis of a magnetic core-shell nanocomposite. The material was chosen as an efficient sorbent for the preconcentration of the above metal ions, followed by their determination by flow injection inductively coupled plasma atomic emission spectrometry. The assay was optimized using a combination of central composite design (CCD) and a Bayesian regularized artificial neural network (BRANN) technique. Under optimal conditions, the preconcentration factors are in the range between 66 and 232, and detection limits are as low as 0.3 to 1 μg ⋅L
−1
. The relative standard deviations are <6.4% (for
n
= 3; at 50 μg ⋅ L
−1
). Real samples were analyzed, and the results demonstrate that such core-shell magnetic microspheres are promising sorbents for rapid and efficient extraction of heavy metal ions from complex samples.
Graphical abstract
New magnetic metal organic frame works were synthesized and applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III) and Mn(II).</description><subject>Adsorption</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Aqueous solutions</subject><subject>Artificial neural networks</subject><subject>Atomic emission spectroscopy</subject><subject>Bayesian analysis</subject><subject>Cadmium compounds</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Design optimization</subject><subject>Emission analysis</subject><subject>Extraction</subject><subject>Heavy metals</subject><subject>Inductively coupled plasma</subject><subject>Ions</subject><subject>Lead</subject><subject>Magnetic cores</subject><subject>Manganese</subject><subject>Metal ions</subject><subject>Metal-organic frameworks</subject><subject>Microengineering</subject><subject>Microspheres</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Neural networks</subject><subject>Nickel</subject><subject>Original Paper</subject><subject>Particulate composites</subject><subject>Sorbents</subject><subject>Spectrometry</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9v1DAQxSNEJZaWD8DNEmeX8f_kuFoVWqkIpJaz5TjjbcrGLnYW2CPfHIdw4AKyZI9H7_dszWua1wwuGYB5WwA0SArMUM6EoOJZs2FSaKrAiOfNBoBrKrThL5qXpTxCFWouN83PD24fcR49mXB2B5ry3sV6C9lN-D3lL4WElMn8gAR_zNn5eUyRpECWGomb0jHOZWk8oPt2Wl1I1RTylMeFTAs8ZjLgjHkao_vt0J_Ize4T3V7dXTRnwR0Kvvpznjef313d767p7cf3N7vtLfWiFTM1gw-9a3shhAyy77UC3gmph67rw9A6Ljx6J5Wrm0bjAkDnlTEOJQfhvThv3qy-Tzl9PWKZ7WM65liftKzjqu2UVPK_qraDFiR0vKouV9XeHdCOMaRlHHUNOI0-RQxj7W8NU6C6lukKsBXwOZWSMdg6ncnlk2VglwDtGqCtudglQCsqw1emVG3cY_7rK_-EfgGNAJ5m</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Safari, Meysam</creator><creator>Yamini, Yadollah</creator><creator>Masoomi, Mohammad Yaser</creator><creator>Morsali, Ali</creator><creator>Mani-Varnosfaderani, Ahmad</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M0S</scope><scope>M1P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170501</creationdate><title>Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES</title><author>Safari, Meysam ; Yamini, Yadollah ; Masoomi, Mohammad Yaser ; Morsali, Ali ; Mani-Varnosfaderani, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7dcfba8b3334f4bb65029346d99bfd8a23ceca45aca46e7af009c577ae4203cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Aqueous solutions</topic><topic>Artificial neural networks</topic><topic>Atomic emission spectroscopy</topic><topic>Bayesian analysis</topic><topic>Cadmium compounds</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Design optimization</topic><topic>Emission analysis</topic><topic>Extraction</topic><topic>Heavy metals</topic><topic>Inductively coupled plasma</topic><topic>Ions</topic><topic>Lead</topic><topic>Magnetic cores</topic><topic>Manganese</topic><topic>Metal ions</topic><topic>Metal-organic frameworks</topic><topic>Microengineering</topic><topic>Microspheres</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Neural networks</topic><topic>Nickel</topic><topic>Original Paper</topic><topic>Particulate composites</topic><topic>Sorbents</topic><topic>Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safari, Meysam</creatorcontrib><creatorcontrib>Yamini, Yadollah</creatorcontrib><creatorcontrib>Masoomi, Mohammad Yaser</creatorcontrib><creatorcontrib>Morsali, Ali</creatorcontrib><creatorcontrib>Mani-Varnosfaderani, Ahmad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safari, Meysam</au><au>Yamini, Yadollah</au><au>Masoomi, Mohammad Yaser</au><au>Morsali, Ali</au><au>Mani-Varnosfaderani, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>184</volume><issue>5</issue><spage>1555</spage><epage>1564</epage><pages>1555-1564</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>The authors describe the preparation of two kinds of metal-organic frameworks (MOFs), referred to as TMU-8 and TMU-9. The MOFs were applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III), and Mn(II) from aqueous solutions. The roles of the azine groups in TMU-8 (in comparison to TMU-9 which does not have an azine group) and the role of void spaces of these MOFs toward the adsorption of metal ions also are evaluated. The studies reveal that TMU-8 has a better adsorption capability than TMU-9. A magnetic TMU-8 was then fabricated by in-situ synthesis of a magnetic core-shell nanocomposite. The material was chosen as an efficient sorbent for the preconcentration of the above metal ions, followed by their determination by flow injection inductively coupled plasma atomic emission spectrometry. The assay was optimized using a combination of central composite design (CCD) and a Bayesian regularized artificial neural network (BRANN) technique. Under optimal conditions, the preconcentration factors are in the range between 66 and 232, and detection limits are as low as 0.3 to 1 μg ⋅L
−1
. The relative standard deviations are <6.4% (for
n
= 3; at 50 μg ⋅ L
−1
). Real samples were analyzed, and the results demonstrate that such core-shell magnetic microspheres are promising sorbents for rapid and efficient extraction of heavy metal ions from complex samples.
Graphical abstract
New magnetic metal organic frame works were synthesized and applied to the preconcentration of the ions Co(II), Cu(II), Pb(II), Cd(II), Ni(II), Cr(III) and Mn(II).</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-017-2133-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2017-05, Vol.184 (5), p.1555-1564 |
issn | 0026-3672 1436-5073 |
language | eng |
recordid | cdi_proquest_journals_1925895454 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Analysis Analytical Chemistry Aqueous solutions Artificial neural networks Atomic emission spectroscopy Bayesian analysis Cadmium compounds Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Coordination compounds Copper Design optimization Emission analysis Extraction Heavy metals Inductively coupled plasma Ions Lead Magnetic cores Manganese Metal ions Metal-organic frameworks Microengineering Microspheres Nanochemistry Nanocomposites Nanotechnology Neural networks Nickel Original Paper Particulate composites Sorbents Spectrometry |
title | Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20metal-organic%20frameworks%20for%20the%20extraction%20of%20trace%20amounts%20of%20heavy%20metal%20ions%20prior%20to%20their%20determination%20by%20ICP-AES&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Safari,%20Meysam&rft.date=2017-05-01&rft.volume=184&rft.issue=5&rft.spage=1555&rft.epage=1564&rft.pages=1555-1564&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-017-2133-3&rft_dat=%3Cgale_proqu%3EA715059816%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925895454&rft_id=info:pmid/&rft_galeid=A715059816&rfr_iscdi=true |