Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
Ecological data often show temporal, spatial, hierarchical (random effects), or phylogenetic structure. Modern statistical approaches are increasingly accounting for such dependencies. However, when performing cross-validation, these structures are regularly ignored, resulting in serious underestima...
Gespeichert in:
Veröffentlicht in: | Ecography (Copenhagen) 2017-08, Vol.40 (8), p.913-929 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 929 |
---|---|
container_issue | 8 |
container_start_page | 913 |
container_title | Ecography (Copenhagen) |
container_volume | 40 |
creator | Roberts, David R. Bahn, Volker Ciuti, Simone Boyce, Mark S. Elith, Jane Guillera‐Arroita, Gurutzeta Hauenstein, Severin Lahoz‐Monfort, José J. Schröder, Boris Thuiller, Wilfried Warton, David I. Wintle, Brendan A. Hartig, Florian Dormann, Carsten F. |
description | Ecological data often show temporal, spatial, hierarchical (random effects), or phylogenetic structure. Modern statistical approaches are increasingly accounting for such dependencies. However, when performing cross-validation, these structures are regularly ignored, resulting in serious underestimation of predictive error. One cause for the poor performance of uncorrected (random) cross-validation, noted often by modellers, are dependence structures in the data that persist as dependence structures in model residuals, violating the assumption of independence. Even more concerning, because often overlooked, is that structured data also provides ample opportunity for overfitting with non-causal predictors. This problem can persist even if remedies such as autoregressive models, generalized least squares, or mixed models are used. Block cross-validation, where data are split strategically rather than randomly, can address these issues. However, the blocking strategy must be carefully considered. Blocking in space, time, random effects or phylogenetic distance, while accounting for dependencies in the data, may also unwittingly induce extrapolations by restricting the ranges or combinations of predictor variables available for model training, thus overestimating interpolation errors. On the other hand, deliberate blocking in predictor space may also improve error estimates when extrapolation is the modelling goal. Here, we review the ecological literature on non-random and blocked cross-validation approaches. We also provide a series of simulations and case studies, in which we show that, for all instances tested, block cross-validation is nearly universally more appropriate than random cross-validation if the goal is predicting to new data or predictor space, or for selecting causal predictors. We recommend that block cross-validation be used wherever dependence structures exist in a dataset, even if no correlation structure is visible in the fitted model residuals, or if the fitted models account for such correlations. |
doi_str_mv | 10.1111/ecog.02881 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1925803804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90011350</jstor_id><sourcerecordid>90011350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3991-1f4faa4c4910d0cb262fe1f3688d2d832fb2de1be640b9a7afb37cddc94afe7b3</originalsourceid><addsrcrecordid>eNp9kMtLw0AQxhdRsFYv3oWANzF1dvPaPUqoVSj0ouew2UezJe3G3Y2l_72JEY_OZR78vhnmQ-gWwwIP8aSE3S6AUIrP0AznADFktDhHM2CQx0XG4BJdeb8DwITldIZk6az38RdvjeTB2EPkg-NBbY3ykbYuGqY8OprQREHtO-t4-xj5bkDHojHKcScaI8ZuoLvm1NqtOqhgxLipF6F36hpdaN56dfOb5-jjZflevsbrzeqtfF7HImEMx1inmvNUpAyDBFGTnGiFdZJTKomkCdE1kQrXKk-hZrzguk4KIaVgKdeqqJM5up_2ds5-9sqHamd7dxhOVpiRjEJCIR2oh4kS4-tO6apzZs_dqcJQjS5Wo4vVj4sDDBN8NK06_UNWy3Kz-pXcTZKdD9b9SdjgOU4ySL4BUvSAmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925803804</pqid></control><display><type>article</type><title>Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Roberts, David R. ; Bahn, Volker ; Ciuti, Simone ; Boyce, Mark S. ; Elith, Jane ; Guillera‐Arroita, Gurutzeta ; Hauenstein, Severin ; Lahoz‐Monfort, José J. ; Schröder, Boris ; Thuiller, Wilfried ; Warton, David I. ; Wintle, Brendan A. ; Hartig, Florian ; Dormann, Carsten F.</creator><creatorcontrib>Roberts, David R. ; Bahn, Volker ; Ciuti, Simone ; Boyce, Mark S. ; Elith, Jane ; Guillera‐Arroita, Gurutzeta ; Hauenstein, Severin ; Lahoz‐Monfort, José J. ; Schröder, Boris ; Thuiller, Wilfried ; Warton, David I. ; Wintle, Brendan A. ; Hartig, Florian ; Dormann, Carsten F.</creatorcontrib><description>Ecological data often show temporal, spatial, hierarchical (random effects), or phylogenetic structure. Modern statistical approaches are increasingly accounting for such dependencies. However, when performing cross-validation, these structures are regularly ignored, resulting in serious underestimation of predictive error. One cause for the poor performance of uncorrected (random) cross-validation, noted often by modellers, are dependence structures in the data that persist as dependence structures in model residuals, violating the assumption of independence. Even more concerning, because often overlooked, is that structured data also provides ample opportunity for overfitting with non-causal predictors. This problem can persist even if remedies such as autoregressive models, generalized least squares, or mixed models are used. Block cross-validation, where data are split strategically rather than randomly, can address these issues. However, the blocking strategy must be carefully considered. Blocking in space, time, random effects or phylogenetic distance, while accounting for dependencies in the data, may also unwittingly induce extrapolations by restricting the ranges or combinations of predictor variables available for model training, thus overestimating interpolation errors. On the other hand, deliberate blocking in predictor space may also improve error estimates when extrapolation is the modelling goal. Here, we review the ecological literature on non-random and blocked cross-validation approaches. We also provide a series of simulations and case studies, in which we show that, for all instances tested, block cross-validation is nearly universally more appropriate than random cross-validation if the goal is predicting to new data or predictor space, or for selecting causal predictors. We recommend that block cross-validation be used wherever dependence structures exist in a dataset, even if no correlation structure is visible in the fitted model residuals, or if the fitted models account for such correlations.</description><identifier>ISSN: 0906-7590</identifier><identifier>EISSN: 1600-0587</identifier><identifier>DOI: 10.1111/ecog.02881</identifier><language>eng</language><publisher>Oxford, UK: Nordic Society Oikos</publisher><subject>Autoregressive models ; Autoregressive processes ; Blocking ; Case studies ; Computer simulation ; Correlation ; Ecological effects ; Extrapolation ; Interpolation ; Least squares method ; Literature reviews ; Mathematical models ; Phylogenetics ; Phylogeny ; Review & synthesis ; Structural hierarchy</subject><ispartof>Ecography (Copenhagen), 2017-08, Vol.40 (8), p.913-929</ispartof><rights>2016 Nordic Society Oikos</rights><rights>2016 The Authors</rights><rights>Ecography © 2017 Nordic Society Oikos</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3991-1f4faa4c4910d0cb262fe1f3688d2d832fb2de1be640b9a7afb37cddc94afe7b3</citedby><cites>FETCH-LOGICAL-c3991-1f4faa4c4910d0cb262fe1f3688d2d832fb2de1be640b9a7afb37cddc94afe7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fecog.02881$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fecog.02881$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Roberts, David R.</creatorcontrib><creatorcontrib>Bahn, Volker</creatorcontrib><creatorcontrib>Ciuti, Simone</creatorcontrib><creatorcontrib>Boyce, Mark S.</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Guillera‐Arroita, Gurutzeta</creatorcontrib><creatorcontrib>Hauenstein, Severin</creatorcontrib><creatorcontrib>Lahoz‐Monfort, José J.</creatorcontrib><creatorcontrib>Schröder, Boris</creatorcontrib><creatorcontrib>Thuiller, Wilfried</creatorcontrib><creatorcontrib>Warton, David I.</creatorcontrib><creatorcontrib>Wintle, Brendan A.</creatorcontrib><creatorcontrib>Hartig, Florian</creatorcontrib><creatorcontrib>Dormann, Carsten F.</creatorcontrib><title>Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure</title><title>Ecography (Copenhagen)</title><description>Ecological data often show temporal, spatial, hierarchical (random effects), or phylogenetic structure. Modern statistical approaches are increasingly accounting for such dependencies. However, when performing cross-validation, these structures are regularly ignored, resulting in serious underestimation of predictive error. One cause for the poor performance of uncorrected (random) cross-validation, noted often by modellers, are dependence structures in the data that persist as dependence structures in model residuals, violating the assumption of independence. Even more concerning, because often overlooked, is that structured data also provides ample opportunity for overfitting with non-causal predictors. This problem can persist even if remedies such as autoregressive models, generalized least squares, or mixed models are used. Block cross-validation, where data are split strategically rather than randomly, can address these issues. However, the blocking strategy must be carefully considered. Blocking in space, time, random effects or phylogenetic distance, while accounting for dependencies in the data, may also unwittingly induce extrapolations by restricting the ranges or combinations of predictor variables available for model training, thus overestimating interpolation errors. On the other hand, deliberate blocking in predictor space may also improve error estimates when extrapolation is the modelling goal. Here, we review the ecological literature on non-random and blocked cross-validation approaches. We also provide a series of simulations and case studies, in which we show that, for all instances tested, block cross-validation is nearly universally more appropriate than random cross-validation if the goal is predicting to new data or predictor space, or for selecting causal predictors. We recommend that block cross-validation be used wherever dependence structures exist in a dataset, even if no correlation structure is visible in the fitted model residuals, or if the fitted models account for such correlations.</description><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Blocking</subject><subject>Case studies</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Ecological effects</subject><subject>Extrapolation</subject><subject>Interpolation</subject><subject>Least squares method</subject><subject>Literature reviews</subject><subject>Mathematical models</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Review & synthesis</subject><subject>Structural hierarchy</subject><issn>0906-7590</issn><issn>1600-0587</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLw0AQxhdRsFYv3oWANzF1dvPaPUqoVSj0ouew2UezJe3G3Y2l_72JEY_OZR78vhnmQ-gWwwIP8aSE3S6AUIrP0AznADFktDhHM2CQx0XG4BJdeb8DwITldIZk6az38RdvjeTB2EPkg-NBbY3ykbYuGqY8OprQREHtO-t4-xj5bkDHojHKcScaI8ZuoLvm1NqtOqhgxLipF6F36hpdaN56dfOb5-jjZflevsbrzeqtfF7HImEMx1inmvNUpAyDBFGTnGiFdZJTKomkCdE1kQrXKk-hZrzguk4KIaVgKdeqqJM5up_2ds5-9sqHamd7dxhOVpiRjEJCIR2oh4kS4-tO6apzZs_dqcJQjS5Wo4vVj4sDDBN8NK06_UNWy3Kz-pXcTZKdD9b9SdjgOU4ySL4BUvSAmg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Roberts, David R.</creator><creator>Bahn, Volker</creator><creator>Ciuti, Simone</creator><creator>Boyce, Mark S.</creator><creator>Elith, Jane</creator><creator>Guillera‐Arroita, Gurutzeta</creator><creator>Hauenstein, Severin</creator><creator>Lahoz‐Monfort, José J.</creator><creator>Schröder, Boris</creator><creator>Thuiller, Wilfried</creator><creator>Warton, David I.</creator><creator>Wintle, Brendan A.</creator><creator>Hartig, Florian</creator><creator>Dormann, Carsten F.</creator><general>Nordic Society Oikos</general><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>C1K</scope></search><sort><creationdate>20170801</creationdate><title>Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure</title><author>Roberts, David R. ; Bahn, Volker ; Ciuti, Simone ; Boyce, Mark S. ; Elith, Jane ; Guillera‐Arroita, Gurutzeta ; Hauenstein, Severin ; Lahoz‐Monfort, José J. ; Schröder, Boris ; Thuiller, Wilfried ; Warton, David I. ; Wintle, Brendan A. ; Hartig, Florian ; Dormann, Carsten F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3991-1f4faa4c4910d0cb262fe1f3688d2d832fb2de1be640b9a7afb37cddc94afe7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Blocking</topic><topic>Case studies</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Ecological effects</topic><topic>Extrapolation</topic><topic>Interpolation</topic><topic>Least squares method</topic><topic>Literature reviews</topic><topic>Mathematical models</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Review & synthesis</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, David R.</creatorcontrib><creatorcontrib>Bahn, Volker</creatorcontrib><creatorcontrib>Ciuti, Simone</creatorcontrib><creatorcontrib>Boyce, Mark S.</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Guillera‐Arroita, Gurutzeta</creatorcontrib><creatorcontrib>Hauenstein, Severin</creatorcontrib><creatorcontrib>Lahoz‐Monfort, José J.</creatorcontrib><creatorcontrib>Schröder, Boris</creatorcontrib><creatorcontrib>Thuiller, Wilfried</creatorcontrib><creatorcontrib>Warton, David I.</creatorcontrib><creatorcontrib>Wintle, Brendan A.</creatorcontrib><creatorcontrib>Hartig, Florian</creatorcontrib><creatorcontrib>Dormann, Carsten F.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Ecography (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, David R.</au><au>Bahn, Volker</au><au>Ciuti, Simone</au><au>Boyce, Mark S.</au><au>Elith, Jane</au><au>Guillera‐Arroita, Gurutzeta</au><au>Hauenstein, Severin</au><au>Lahoz‐Monfort, José J.</au><au>Schröder, Boris</au><au>Thuiller, Wilfried</au><au>Warton, David I.</au><au>Wintle, Brendan A.</au><au>Hartig, Florian</au><au>Dormann, Carsten F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure</atitle><jtitle>Ecography (Copenhagen)</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>40</volume><issue>8</issue><spage>913</spage><epage>929</epage><pages>913-929</pages><issn>0906-7590</issn><eissn>1600-0587</eissn><abstract>Ecological data often show temporal, spatial, hierarchical (random effects), or phylogenetic structure. Modern statistical approaches are increasingly accounting for such dependencies. However, when performing cross-validation, these structures are regularly ignored, resulting in serious underestimation of predictive error. One cause for the poor performance of uncorrected (random) cross-validation, noted often by modellers, are dependence structures in the data that persist as dependence structures in model residuals, violating the assumption of independence. Even more concerning, because often overlooked, is that structured data also provides ample opportunity for overfitting with non-causal predictors. This problem can persist even if remedies such as autoregressive models, generalized least squares, or mixed models are used. Block cross-validation, where data are split strategically rather than randomly, can address these issues. However, the blocking strategy must be carefully considered. Blocking in space, time, random effects or phylogenetic distance, while accounting for dependencies in the data, may also unwittingly induce extrapolations by restricting the ranges or combinations of predictor variables available for model training, thus overestimating interpolation errors. On the other hand, deliberate blocking in predictor space may also improve error estimates when extrapolation is the modelling goal. Here, we review the ecological literature on non-random and blocked cross-validation approaches. We also provide a series of simulations and case studies, in which we show that, for all instances tested, block cross-validation is nearly universally more appropriate than random cross-validation if the goal is predicting to new data or predictor space, or for selecting causal predictors. We recommend that block cross-validation be used wherever dependence structures exist in a dataset, even if no correlation structure is visible in the fitted model residuals, or if the fitted models account for such correlations.</abstract><cop>Oxford, UK</cop><pub>Nordic Society Oikos</pub><doi>10.1111/ecog.02881</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0906-7590 |
ispartof | Ecography (Copenhagen), 2017-08, Vol.40 (8), p.913-929 |
issn | 0906-7590 1600-0587 |
language | eng |
recordid | cdi_proquest_journals_1925803804 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Autoregressive models Autoregressive processes Blocking Case studies Computer simulation Correlation Ecological effects Extrapolation Interpolation Least squares method Literature reviews Mathematical models Phylogenetics Phylogeny Review & synthesis Structural hierarchy |
title | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-validation%20strategies%20for%20data%20with%20temporal,%20spatial,%20hierarchical,%20or%20phylogenetic%20structure&rft.jtitle=Ecography%20(Copenhagen)&rft.au=Roberts,%20David%20R.&rft.date=2017-08-01&rft.volume=40&rft.issue=8&rft.spage=913&rft.epage=929&rft.pages=913-929&rft.issn=0906-7590&rft.eissn=1600-0587&rft_id=info:doi/10.1111/ecog.02881&rft_dat=%3Cjstor_proqu%3E90011350%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925803804&rft_id=info:pmid/&rft_jstor_id=90011350&rfr_iscdi=true |