Global solutions for a model of polymeric flows with wall slip

We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assumi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2017-09, Vol.40 (14), p.5035-5043
1. Verfasser: Baranovskii, E. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5043
container_issue 14
container_start_page 5035
container_title Mathematical methods in the applied sciences
container_volume 40
creator Baranovskii, E. S.
description We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.4368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925803504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925803504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnXxsNnsRSrFVaPGi55BkE9ySbdakZem_d2u9eprLMzPwInRPYEYA6FPX6RlnQl6gCYG6LgivxCWaAKmg4JTwa3ST8xYAJCF0gp5XIRodcI7hsG_jLmMfE9a4i40LOHrcx3DsXGot9iEOGQ_t_gsPOowroe1v0ZXXIbu7vzlFn8uXj8VrsX5fvS3m68LSmsmCM8Zowyx3vCk99bRi3oA1pXWiFNo23onKS2G14GCaRhsjqXCyLrmBhns2RQ_nu32K3weX92obD2k3vlSkpqUEVgIf1eNZ2RRzTs6rPrWdTkdFQJ3qqLGOOtUZaXGmQxvc8V-nNpv5r_8BbWZltw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925803504</pqid></control><display><type>article</type><title>Global solutions for a model of polymeric flows with wall slip</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baranovskii, E. S.</creator><creatorcontrib>Baranovskii, E. S.</creatorcontrib><description>We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4368</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary value problems ; existence and uniqueness theorems ; Fluid flow ; Mathematical models ; nonlinear PDE ; non‐Newtonian fluid ; polymeric flows ; Slip ; slip boundary condition ; Three dimensional models ; Uniqueness ; Wall slip ; weak solution</subject><ispartof>Mathematical methods in the applied sciences, 2017-09, Vol.40 (14), p.5035-5043</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</citedby><cites>FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</cites><orcidid>0000-0002-1514-4475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4368$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4368$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Baranovskii, E. S.</creatorcontrib><title>Global solutions for a model of polymeric flows with wall slip</title><title>Mathematical methods in the applied sciences</title><description>We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Boundary value problems</subject><subject>existence and uniqueness theorems</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>nonlinear PDE</subject><subject>non‐Newtonian fluid</subject><subject>polymeric flows</subject><subject>Slip</subject><subject>slip boundary condition</subject><subject>Three dimensional models</subject><subject>Uniqueness</subject><subject>Wall slip</subject><subject>weak solution</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnXxsNnsRSrFVaPGi55BkE9ySbdakZem_d2u9eprLMzPwInRPYEYA6FPX6RlnQl6gCYG6LgivxCWaAKmg4JTwa3ST8xYAJCF0gp5XIRodcI7hsG_jLmMfE9a4i40LOHrcx3DsXGot9iEOGQ_t_gsPOowroe1v0ZXXIbu7vzlFn8uXj8VrsX5fvS3m68LSmsmCM8Zowyx3vCk99bRi3oA1pXWiFNo23onKS2G14GCaRhsjqXCyLrmBhns2RQ_nu32K3weX92obD2k3vlSkpqUEVgIf1eNZ2RRzTs6rPrWdTkdFQJ3qqLGOOtUZaXGmQxvc8V-nNpv5r_8BbWZltw</recordid><startdate>20170930</startdate><enddate>20170930</enddate><creator>Baranovskii, E. S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1514-4475</orcidid></search><sort><creationdate>20170930</creationdate><title>Global solutions for a model of polymeric flows with wall slip</title><author>Baranovskii, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><topic>existence and uniqueness theorems</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>nonlinear PDE</topic><topic>non‐Newtonian fluid</topic><topic>polymeric flows</topic><topic>Slip</topic><topic>slip boundary condition</topic><topic>Three dimensional models</topic><topic>Uniqueness</topic><topic>Wall slip</topic><topic>weak solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranovskii, E. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranovskii, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global solutions for a model of polymeric flows with wall slip</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2017-09-30</date><risdate>2017</risdate><volume>40</volume><issue>14</issue><spage>5035</spage><epage>5043</epage><pages>5035-5043</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4368</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1514-4475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2017-09, Vol.40 (14), p.5035-5043
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_1925803504
source Wiley Online Library Journals Frontfile Complete
subjects Boundary value problems
existence and uniqueness theorems
Fluid flow
Mathematical models
nonlinear PDE
non‐Newtonian fluid
polymeric flows
Slip
slip boundary condition
Three dimensional models
Uniqueness
Wall slip
weak solution
title Global solutions for a model of polymeric flows with wall slip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20solutions%20for%20a%20model%20of%20polymeric%20flows%20with%20wall%20slip&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Baranovskii,%20E.%20S.&rft.date=2017-09-30&rft.volume=40&rft.issue=14&rft.spage=5035&rft.epage=5043&rft.pages=5035-5043&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4368&rft_dat=%3Cproquest_cross%3E1925803504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925803504&rft_id=info:pmid/&rfr_iscdi=true