Global solutions for a model of polymeric flows with wall slip
We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assumi...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2017-09, Vol.40 (14), p.5035-5043 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5043 |
---|---|
container_issue | 14 |
container_start_page | 5035 |
container_title | Mathematical methods in the applied sciences |
container_volume | 40 |
creator | Baranovskii, E. S. |
description | We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.4368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925803504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925803504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnXxsNnsRSrFVaPGi55BkE9ySbdakZem_d2u9eprLMzPwInRPYEYA6FPX6RlnQl6gCYG6LgivxCWaAKmg4JTwa3ST8xYAJCF0gp5XIRodcI7hsG_jLmMfE9a4i40LOHrcx3DsXGot9iEOGQ_t_gsPOowroe1v0ZXXIbu7vzlFn8uXj8VrsX5fvS3m68LSmsmCM8Zowyx3vCk99bRi3oA1pXWiFNo23onKS2G14GCaRhsjqXCyLrmBhns2RQ_nu32K3weX92obD2k3vlSkpqUEVgIf1eNZ2RRzTs6rPrWdTkdFQJ3qqLGOOtUZaXGmQxvc8V-nNpv5r_8BbWZltw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925803504</pqid></control><display><type>article</type><title>Global solutions for a model of polymeric flows with wall slip</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baranovskii, E. S.</creator><creatorcontrib>Baranovskii, E. S.</creatorcontrib><description>We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4368</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary value problems ; existence and uniqueness theorems ; Fluid flow ; Mathematical models ; nonlinear PDE ; non‐Newtonian fluid ; polymeric flows ; Slip ; slip boundary condition ; Three dimensional models ; Uniqueness ; Wall slip ; weak solution</subject><ispartof>Mathematical methods in the applied sciences, 2017-09, Vol.40 (14), p.5035-5043</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</citedby><cites>FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</cites><orcidid>0000-0002-1514-4475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4368$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4368$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Baranovskii, E. S.</creatorcontrib><title>Global solutions for a model of polymeric flows with wall slip</title><title>Mathematical methods in the applied sciences</title><description>We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley & Sons, Ltd.</description><subject>Boundary value problems</subject><subject>existence and uniqueness theorems</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>nonlinear PDE</subject><subject>non‐Newtonian fluid</subject><subject>polymeric flows</subject><subject>Slip</subject><subject>slip boundary condition</subject><subject>Three dimensional models</subject><subject>Uniqueness</subject><subject>Wall slip</subject><subject>weak solution</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQgOEgCtYq-BMCXrxsnXxsNnsRSrFVaPGi55BkE9ySbdakZem_d2u9eprLMzPwInRPYEYA6FPX6RlnQl6gCYG6LgivxCWaAKmg4JTwa3ST8xYAJCF0gp5XIRodcI7hsG_jLmMfE9a4i40LOHrcx3DsXGot9iEOGQ_t_gsPOowroe1v0ZXXIbu7vzlFn8uXj8VrsX5fvS3m68LSmsmCM8Zowyx3vCk99bRi3oA1pXWiFNo23onKS2G14GCaRhsjqXCyLrmBhns2RQ_nu32K3weX92obD2k3vlSkpqUEVgIf1eNZ2RRzTs6rPrWdTkdFQJ3qqLGOOtUZaXGmQxvc8V-nNpv5r_8BbWZltw</recordid><startdate>20170930</startdate><enddate>20170930</enddate><creator>Baranovskii, E. S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1514-4475</orcidid></search><sort><creationdate>20170930</creationdate><title>Global solutions for a model of polymeric flows with wall slip</title><author>Baranovskii, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-43332d3c4e4d5f2f273fb0cb5ce656acdfe67f86ca640bddabb826e8954b0d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary value problems</topic><topic>existence and uniqueness theorems</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>nonlinear PDE</topic><topic>non‐Newtonian fluid</topic><topic>polymeric flows</topic><topic>Slip</topic><topic>slip boundary condition</topic><topic>Three dimensional models</topic><topic>Uniqueness</topic><topic>Wall slip</topic><topic>weak solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranovskii, E. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranovskii, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global solutions for a model of polymeric flows with wall slip</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2017-09-30</date><risdate>2017</risdate><volume>40</volume><issue>14</issue><spage>5035</spage><epage>5043</epage><pages>5035-5043</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We consider the initial‐boundary value problem for a model of motion of aqueous polymer solutions in a bounded three‐dimensional domain subject to the Navier slip boundary condition. We construct a global (in time) weak solution to this problem. Moreover, we establish some uniqueness results, assuming additional regularity for weak solutions. Copyright © 2017 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4368</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1514-4475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2017-09, Vol.40 (14), p.5035-5043 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_1925803504 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary value problems existence and uniqueness theorems Fluid flow Mathematical models nonlinear PDE non‐Newtonian fluid polymeric flows Slip slip boundary condition Three dimensional models Uniqueness Wall slip weak solution |
title | Global solutions for a model of polymeric flows with wall slip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20solutions%20for%20a%20model%20of%20polymeric%20flows%20with%20wall%20slip&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Baranovskii,%20E.%20S.&rft.date=2017-09-30&rft.volume=40&rft.issue=14&rft.spage=5035&rft.epage=5043&rft.pages=5035-5043&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4368&rft_dat=%3Cproquest_cross%3E1925803504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925803504&rft_id=info:pmid/&rfr_iscdi=true |