Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process
A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dime...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2017-09, Vol.63 (9), p.3818-3831 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3831 |
---|---|
container_issue | 9 |
container_start_page | 3818 |
container_title | AIChE journal |
container_volume | 63 |
creator | Narasingam, Abhinav Siddhamshetty, Prashanth Sang‐Il Kwon, Joseph |
description | A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers
AIChE J
, 63: 3818–3831, 2017 |
doi_str_mv | 10.1002/aic.15733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925517846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925517846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEuVnwQ0ssWKRYjtxfthVUH4kJFiUdeTYY2qU2MF2hLrjCNyAu3ESTMtqNKP3vjd6CJ1RMqeEsEth5JzyKs_30Izyosp4Q_g-mhFCaJYO9BAdhfCWNlbVbIa-VzCMzosey34KEbyxr1g7j51X4LEHNclonMVOY-tsbywIj0fhRed6I_HzzRKHTTIOAX-YuMbRDPDz-aVgBKvARhxGEU3iKzcIY8MVXoxjcootNTos8HqjvJj-aNoLGaftD6N3EkI4QQda9AFO_-cxerldrq7vs8enu4frxWMmWVPETJWgSVOJjgvd5bouKtkxXXSMqZJDWQIAK5tOFJxxXteSy6oDxZWua1rlmubH6HzHTbnvE4TYvrnJ2xTZ0iZ5aFUXZVJd7FTSuxA86Hb0ZhB-01LS_vXfpv7bbf_5L5mWfgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925517846</pqid></control><display><type>article</type><title>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</title><source>Access via Wiley Online Library</source><creator>Narasingam, Abhinav ; Siddhamshetty, Prashanth ; Sang‐Il Kwon, Joseph</creator><creatorcontrib>Narasingam, Abhinav ; Siddhamshetty, Prashanth ; Sang‐Il Kwon, Joseph</creatorcontrib><description>A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers
AIChE J
, 63: 3818–3831, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15733</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Approximation ; Benders decomposition ; Clustering ; Clusters ; Computational efficiency ; Decomposition ; Eigenvectors ; Galerkin method ; Hydraulic fracturing ; Integer programming ; Iterative methods ; Iterative solution ; Linear programming ; Mathematical programming ; Model reduction ; Nonlinear programming ; Nonlinear systems ; Parabolic differential equations ; Partial differential equations ; Projection ; Proper Orthogonal Decomposition ; Reduction ; Time dependence</subject><ispartof>AIChE journal, 2017-09, Vol.63 (9), p.3818-3831</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</citedby><cites>FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</cites><orcidid>0000-0002-7903-5681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Narasingam, Abhinav</creatorcontrib><creatorcontrib>Siddhamshetty, Prashanth</creatorcontrib><creatorcontrib>Sang‐Il Kwon, Joseph</creatorcontrib><title>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</title><title>AIChE journal</title><description>A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers
AIChE J
, 63: 3818–3831, 2017</description><subject>Approximation</subject><subject>Benders decomposition</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computational efficiency</subject><subject>Decomposition</subject><subject>Eigenvectors</subject><subject>Galerkin method</subject><subject>Hydraulic fracturing</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Model reduction</subject><subject>Nonlinear programming</subject><subject>Nonlinear systems</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Projection</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduction</subject><subject>Time dependence</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEuVnwQ0ssWKRYjtxfthVUH4kJFiUdeTYY2qU2MF2hLrjCNyAu3ESTMtqNKP3vjd6CJ1RMqeEsEth5JzyKs_30Izyosp4Q_g-mhFCaJYO9BAdhfCWNlbVbIa-VzCMzosey34KEbyxr1g7j51X4LEHNclonMVOY-tsbywIj0fhRed6I_HzzRKHTTIOAX-YuMbRDPDz-aVgBKvARhxGEU3iKzcIY8MVXoxjcootNTos8HqjvJj-aNoLGaftD6N3EkI4QQda9AFO_-cxerldrq7vs8enu4frxWMmWVPETJWgSVOJjgvd5bouKtkxXXSMqZJDWQIAK5tOFJxxXteSy6oDxZWua1rlmubH6HzHTbnvE4TYvrnJ2xTZ0iZ5aFUXZVJd7FTSuxA86Hb0ZhB-01LS_vXfpv7bbf_5L5mWfgI</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Narasingam, Abhinav</creator><creator>Siddhamshetty, Prashanth</creator><creator>Sang‐Il Kwon, Joseph</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></search><sort><creationdate>20170901</creationdate><title>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</title><author>Narasingam, Abhinav ; Siddhamshetty, Prashanth ; Sang‐Il Kwon, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Benders decomposition</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computational efficiency</topic><topic>Decomposition</topic><topic>Eigenvectors</topic><topic>Galerkin method</topic><topic>Hydraulic fracturing</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Model reduction</topic><topic>Nonlinear programming</topic><topic>Nonlinear systems</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Projection</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduction</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narasingam, Abhinav</creatorcontrib><creatorcontrib>Siddhamshetty, Prashanth</creatorcontrib><creatorcontrib>Sang‐Il Kwon, Joseph</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narasingam, Abhinav</au><au>Siddhamshetty, Prashanth</au><au>Sang‐Il Kwon, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</atitle><jtitle>AIChE journal</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>63</volume><issue>9</issue><spage>3818</spage><epage>3831</epage><pages>3818-3831</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers
AIChE J
, 63: 3818–3831, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15733</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2017-09, Vol.63 (9), p.3818-3831 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_1925517846 |
source | Access via Wiley Online Library |
subjects | Approximation Benders decomposition Clustering Clusters Computational efficiency Decomposition Eigenvectors Galerkin method Hydraulic fracturing Integer programming Iterative methods Iterative solution Linear programming Mathematical programming Model reduction Nonlinear programming Nonlinear systems Parabolic differential equations Partial differential equations Projection Proper Orthogonal Decomposition Reduction Time dependence |
title | Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20clustering%20for%20order%20reduction%20of%20nonlinear%20parabolic%20PDE%20systems%20with%20time%E2%80%90dependent%20spatial%20domains:%20Application%20to%20a%20hydraulic%20fracturing%20process&rft.jtitle=AIChE%20journal&rft.au=Narasingam,%20Abhinav&rft.date=2017-09-01&rft.volume=63&rft.issue=9&rft.spage=3818&rft.epage=3831&rft.pages=3818-3831&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15733&rft_dat=%3Cproquest_cross%3E1925517846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925517846&rft_id=info:pmid/&rfr_iscdi=true |