Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process

A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2017-09, Vol.63 (9), p.3818-3831
Hauptverfasser: Narasingam, Abhinav, Siddhamshetty, Prashanth, Sang‐Il Kwon, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3831
container_issue 9
container_start_page 3818
container_title AIChE journal
container_volume 63
creator Narasingam, Abhinav
Siddhamshetty, Prashanth
Sang‐Il Kwon, Joseph
description A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers AIChE J , 63: 3818–3831, 2017
doi_str_mv 10.1002/aic.15733
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925517846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925517846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEuVnwQ0ssWKRYjtxfthVUH4kJFiUdeTYY2qU2MF2hLrjCNyAu3ESTMtqNKP3vjd6CJ1RMqeEsEth5JzyKs_30Izyosp4Q_g-mhFCaJYO9BAdhfCWNlbVbIa-VzCMzosey34KEbyxr1g7j51X4LEHNclonMVOY-tsbywIj0fhRed6I_HzzRKHTTIOAX-YuMbRDPDz-aVgBKvARhxGEU3iKzcIY8MVXoxjcootNTos8HqjvJj-aNoLGaftD6N3EkI4QQda9AFO_-cxerldrq7vs8enu4frxWMmWVPETJWgSVOJjgvd5bouKtkxXXSMqZJDWQIAK5tOFJxxXteSy6oDxZWua1rlmubH6HzHTbnvE4TYvrnJ2xTZ0iZ5aFUXZVJd7FTSuxA86Hb0ZhB-01LS_vXfpv7bbf_5L5mWfgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925517846</pqid></control><display><type>article</type><title>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</title><source>Access via Wiley Online Library</source><creator>Narasingam, Abhinav ; Siddhamshetty, Prashanth ; Sang‐Il Kwon, Joseph</creator><creatorcontrib>Narasingam, Abhinav ; Siddhamshetty, Prashanth ; Sang‐Il Kwon, Joseph</creatorcontrib><description>A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers AIChE J , 63: 3818–3831, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15733</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Approximation ; Benders decomposition ; Clustering ; Clusters ; Computational efficiency ; Decomposition ; Eigenvectors ; Galerkin method ; Hydraulic fracturing ; Integer programming ; Iterative methods ; Iterative solution ; Linear programming ; Mathematical programming ; Model reduction ; Nonlinear programming ; Nonlinear systems ; Parabolic differential equations ; Partial differential equations ; Projection ; Proper Orthogonal Decomposition ; Reduction ; Time dependence</subject><ispartof>AIChE journal, 2017-09, Vol.63 (9), p.3818-3831</ispartof><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</citedby><cites>FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</cites><orcidid>0000-0002-7903-5681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Narasingam, Abhinav</creatorcontrib><creatorcontrib>Siddhamshetty, Prashanth</creatorcontrib><creatorcontrib>Sang‐Il Kwon, Joseph</creatorcontrib><title>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</title><title>AIChE journal</title><description>A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers AIChE J , 63: 3818–3831, 2017</description><subject>Approximation</subject><subject>Benders decomposition</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computational efficiency</subject><subject>Decomposition</subject><subject>Eigenvectors</subject><subject>Galerkin method</subject><subject>Hydraulic fracturing</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Iterative solution</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Model reduction</subject><subject>Nonlinear programming</subject><subject>Nonlinear systems</subject><subject>Parabolic differential equations</subject><subject>Partial differential equations</subject><subject>Projection</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduction</subject><subject>Time dependence</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEuVnwQ0ssWKRYjtxfthVUH4kJFiUdeTYY2qU2MF2hLrjCNyAu3ESTMtqNKP3vjd6CJ1RMqeEsEth5JzyKs_30Izyosp4Q_g-mhFCaJYO9BAdhfCWNlbVbIa-VzCMzosey34KEbyxr1g7j51X4LEHNclonMVOY-tsbywIj0fhRed6I_HzzRKHTTIOAX-YuMbRDPDz-aVgBKvARhxGEU3iKzcIY8MVXoxjcootNTos8HqjvJj-aNoLGaftD6N3EkI4QQda9AFO_-cxerldrq7vs8enu4frxWMmWVPETJWgSVOJjgvd5bouKtkxXXSMqZJDWQIAK5tOFJxxXteSy6oDxZWua1rlmubH6HzHTbnvE4TYvrnJ2xTZ0iZ5aFUXZVJd7FTSuxA86Hb0ZhB-01LS_vXfpv7bbf_5L5mWfgI</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Narasingam, Abhinav</creator><creator>Siddhamshetty, Prashanth</creator><creator>Sang‐Il Kwon, Joseph</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></search><sort><creationdate>20170901</creationdate><title>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</title><author>Narasingam, Abhinav ; Siddhamshetty, Prashanth ; Sang‐Il Kwon, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d6ef097ab5afb3f847cb2f4b22d65e66eee269ba4525588c5c7bed5df88173f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Benders decomposition</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computational efficiency</topic><topic>Decomposition</topic><topic>Eigenvectors</topic><topic>Galerkin method</topic><topic>Hydraulic fracturing</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Iterative solution</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Model reduction</topic><topic>Nonlinear programming</topic><topic>Nonlinear systems</topic><topic>Parabolic differential equations</topic><topic>Partial differential equations</topic><topic>Projection</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduction</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narasingam, Abhinav</creatorcontrib><creatorcontrib>Siddhamshetty, Prashanth</creatorcontrib><creatorcontrib>Sang‐Il Kwon, Joseph</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narasingam, Abhinav</au><au>Siddhamshetty, Prashanth</au><au>Sang‐Il Kwon, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process</atitle><jtitle>AIChE journal</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>63</volume><issue>9</issue><spage>3818</spage><epage>3831</epage><pages>3818-3831</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>A temporally‐local model order‐reduction technique for nonlinear parabolic partial differential equation (PDE) systems with time‐dependent spatial domains is presented. In lieu of approximating the solution of interest using global (with respect to the time domain) empirical eigenfunctions, low‐dimensional models are derived by constructing appropriate temporally‐local eigenfunctions. Within this context, first of all, the time domain is partitioned into multiple clusters (i.e., subdomains) by using the framework known as global optimum search. This approach, a variant of Generalized Benders Decomposition, formulates clustering as a Mixed‐Integer Nonlinear Programming problem and involves the iterative solution of a Linear Programming problem (primal problem) and a Mixed‐Integer Linear Programming problem (master problem). Following the cluster generation, local (with respect to time) eigenfunctions are constructed by applying the proper orthogonal decomposition method to the snapshots contained within each cluster. Then, the Galerkin's projection method is employed to derive low‐dimensional ordinary differential equation (ODE) systems for each cluster. The local ODE systems are subsequently used to compute approximate solutions to the original PDE system. The proposed local model order‐reduction technique is applied to a hydraulic fracturing process described by a nonlinear parabolic PDE system with the time‐dependent spatial domain. It is shown to be more accurate and computationally efficient in approximating the original nonlinear system with fewer eigenfunctions, compared to the model order‐reduction technique with temporally‐global eigenfunctions. © 2017 American Institute of Chemical Engineers AIChE J , 63: 3818–3831, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15733</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7903-5681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2017-09, Vol.63 (9), p.3818-3831
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_1925517846
source Access via Wiley Online Library
subjects Approximation
Benders decomposition
Clustering
Clusters
Computational efficiency
Decomposition
Eigenvectors
Galerkin method
Hydraulic fracturing
Integer programming
Iterative methods
Iterative solution
Linear programming
Mathematical programming
Model reduction
Nonlinear programming
Nonlinear systems
Parabolic differential equations
Partial differential equations
Projection
Proper Orthogonal Decomposition
Reduction
Time dependence
title Temporal clustering for order reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to a hydraulic fracturing process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20clustering%20for%20order%20reduction%20of%20nonlinear%20parabolic%20PDE%20systems%20with%20time%E2%80%90dependent%20spatial%20domains:%20Application%20to%20a%20hydraulic%20fracturing%20process&rft.jtitle=AIChE%20journal&rft.au=Narasingam,%20Abhinav&rft.date=2017-09-01&rft.volume=63&rft.issue=9&rft.spage=3818&rft.epage=3831&rft.pages=3818-3831&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15733&rft_dat=%3Cproquest_cross%3E1925517846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925517846&rft_id=info:pmid/&rfr_iscdi=true