Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks

This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2017-01, Vol.15 (8), p.1556-1565
Hauptverfasser: do Nascimento, Eriberto Oliveira, de Oliveira, Lucas Nonato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 8
container_start_page 1556
container_title Revista IEEE América Latina
container_volume 15
creator do Nascimento, Eriberto Oliveira
de Oliveira, Lucas Nonato
description This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.
doi_str_mv 10.1109/TLA.2017.7994806
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1925341332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7994806</ieee_id><sourcerecordid>1925341332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-2571a1a5e121686897005bf70dae6206757a48b07ff72dc2bbb9d6ac8af77bf53</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3wUvA89ZJdrPZHEuxKpQWpHoN2TTR9Cs1yVbqX-_WVvH0Bua9mccPoWsCPUJA3E1H_R4FwntciKKC8gR1CCuqDISgp__mc3QR4xwgr8oq76DXcbMywWm1xJNNciv3pZLza-wtHi7d23vC06DmRicfdtj6gJ-9XpgU8dYp3A_JWaddGx6bJvxI-vRhES_RmVXLaK6O2kUvw_vp4DEbTR6eBv1RpiklKaOME0UUM4SSsi0kOACrLYeZMiWFkjOuiqoGbi2nM03ruhazUulKWc5ry_Iuuj3c3QT_0ZiY5Nw3Yd2-lERQlhckz2nrgoNLBx9jMFZuglupsJME5J6ebOnJPT15pNdGbg4RZ4z5s_9uvwGTgWuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925341332</pqid></control><display><type>article</type><title>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>do Nascimento, Eriberto Oliveira ; de Oliveira, Lucas Nonato</creator><creatorcontrib>do Nascimento, Eriberto Oliveira ; de Oliveira, Lucas Nonato</creatorcontrib><description>This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2017.7994806</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Artificial neural networks ; Computational efficiency ; Differential equations ; Finite difference method ; Frequency division multiplexing ; IEEE transactions ; Mathematical models ; Neural networks ; Nonlinear equations ; Numerical analysis ; Optimization ; RNA ; Rocket ; Rocket engines ; Rockets ; Trajectory</subject><ispartof>Revista IEEE América Latina, 2017-01, Vol.15 (8), p.1556-1565</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-2571a1a5e121686897005bf70dae6206757a48b07ff72dc2bbb9d6ac8af77bf53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7994806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7994806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>do Nascimento, Eriberto Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Lucas Nonato</creatorcontrib><title>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.</description><subject>Artificial neural networks</subject><subject>Computational efficiency</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Frequency division multiplexing</subject><subject>IEEE transactions</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>RNA</subject><subject>Rocket</subject><subject>Rocket engines</subject><subject>Rockets</subject><subject>Trajectory</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3wUvA89ZJdrPZHEuxKpQWpHoN2TTR9Cs1yVbqX-_WVvH0Bua9mccPoWsCPUJA3E1H_R4FwntciKKC8gR1CCuqDISgp__mc3QR4xwgr8oq76DXcbMywWm1xJNNciv3pZLza-wtHi7d23vC06DmRicfdtj6gJ-9XpgU8dYp3A_JWaddGx6bJvxI-vRhES_RmVXLaK6O2kUvw_vp4DEbTR6eBv1RpiklKaOME0UUM4SSsi0kOACrLYeZMiWFkjOuiqoGbi2nM03ruhazUulKWc5ry_Iuuj3c3QT_0ZiY5Nw3Yd2-lERQlhckz2nrgoNLBx9jMFZuglupsJME5J6ebOnJPT15pNdGbg4RZ4z5s_9uvwGTgWuB</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>do Nascimento, Eriberto Oliveira</creator><creator>de Oliveira, Lucas Nonato</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</title><author>do Nascimento, Eriberto Oliveira ; de Oliveira, Lucas Nonato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-2571a1a5e121686897005bf70dae6206757a48b07ff72dc2bbb9d6ac8af77bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Computational efficiency</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Frequency division multiplexing</topic><topic>IEEE transactions</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>RNA</topic><topic>Rocket</topic><topic>Rocket engines</topic><topic>Rockets</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>do Nascimento, Eriberto Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Lucas Nonato</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>do Nascimento, Eriberto Oliveira</au><au>de Oliveira, Lucas Nonato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>15</volume><issue>8</issue><spage>1556</spage><epage>1565</epage><pages>1556-1565</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2017.7994806</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2017-01, Vol.15 (8), p.1556-1565
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_1925341332
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computational efficiency
Differential equations
Finite difference method
Frequency division multiplexing
IEEE transactions
Mathematical models
Neural networks
Nonlinear equations
Numerical analysis
Optimization
RNA
Rocket
Rocket engines
Rockets
Trajectory
title Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Optimization%20of%20Flight%20Trajectory%20for%20Rockets%20via%20Artificial%20Neural%20Networks&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=do%20Nascimento,%20Eriberto%20Oliveira&rft.date=2017-01-01&rft.volume=15&rft.issue=8&rft.spage=1556&rft.epage=1565&rft.pages=1556-1565&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2017.7994806&rft_dat=%3Cproquest_RIE%3E1925341332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925341332&rft_id=info:pmid/&rft_ieee_id=7994806&rfr_iscdi=true