Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks
This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the A...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2017-01, Vol.15 (8), p.1556-1565 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1565 |
---|---|
container_issue | 8 |
container_start_page | 1556 |
container_title | Revista IEEE América Latina |
container_volume | 15 |
creator | do Nascimento, Eriberto Oliveira de Oliveira, Lucas Nonato |
description | This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost. |
doi_str_mv | 10.1109/TLA.2017.7994806 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1925341332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7994806</ieee_id><sourcerecordid>1925341332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-2571a1a5e121686897005bf70dae6206757a48b07ff72dc2bbb9d6ac8af77bf53</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3wUvA89ZJdrPZHEuxKpQWpHoN2TTR9Cs1yVbqX-_WVvH0Bua9mccPoWsCPUJA3E1H_R4FwntciKKC8gR1CCuqDISgp__mc3QR4xwgr8oq76DXcbMywWm1xJNNciv3pZLza-wtHi7d23vC06DmRicfdtj6gJ-9XpgU8dYp3A_JWaddGx6bJvxI-vRhES_RmVXLaK6O2kUvw_vp4DEbTR6eBv1RpiklKaOME0UUM4SSsi0kOACrLYeZMiWFkjOuiqoGbi2nM03ruhazUulKWc5ry_Iuuj3c3QT_0ZiY5Nw3Yd2-lERQlhckz2nrgoNLBx9jMFZuglupsJME5J6ebOnJPT15pNdGbg4RZ4z5s_9uvwGTgWuB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925341332</pqid></control><display><type>article</type><title>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>do Nascimento, Eriberto Oliveira ; de Oliveira, Lucas Nonato</creator><creatorcontrib>do Nascimento, Eriberto Oliveira ; de Oliveira, Lucas Nonato</creatorcontrib><description>This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2017.7994806</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Artificial neural networks ; Computational efficiency ; Differential equations ; Finite difference method ; Frequency division multiplexing ; IEEE transactions ; Mathematical models ; Neural networks ; Nonlinear equations ; Numerical analysis ; Optimization ; RNA ; Rocket ; Rocket engines ; Rockets ; Trajectory</subject><ispartof>Revista IEEE América Latina, 2017-01, Vol.15 (8), p.1556-1565</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-2571a1a5e121686897005bf70dae6206757a48b07ff72dc2bbb9d6ac8af77bf53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7994806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7994806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>do Nascimento, Eriberto Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Lucas Nonato</creatorcontrib><title>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.</description><subject>Artificial neural networks</subject><subject>Computational efficiency</subject><subject>Differential equations</subject><subject>Finite difference method</subject><subject>Frequency division multiplexing</subject><subject>IEEE transactions</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>RNA</subject><subject>Rocket</subject><subject>Rocket engines</subject><subject>Rockets</subject><subject>Trajectory</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3wUvA89ZJdrPZHEuxKpQWpHoN2TTR9Cs1yVbqX-_WVvH0Bua9mccPoWsCPUJA3E1H_R4FwntciKKC8gR1CCuqDISgp__mc3QR4xwgr8oq76DXcbMywWm1xJNNciv3pZLza-wtHi7d23vC06DmRicfdtj6gJ-9XpgU8dYp3A_JWaddGx6bJvxI-vRhES_RmVXLaK6O2kUvw_vp4DEbTR6eBv1RpiklKaOME0UUM4SSsi0kOACrLYeZMiWFkjOuiqoGbi2nM03ruhazUulKWc5ry_Iuuj3c3QT_0ZiY5Nw3Yd2-lERQlhckz2nrgoNLBx9jMFZuglupsJME5J6ebOnJPT15pNdGbg4RZ4z5s_9uvwGTgWuB</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>do Nascimento, Eriberto Oliveira</creator><creator>de Oliveira, Lucas Nonato</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</title><author>do Nascimento, Eriberto Oliveira ; de Oliveira, Lucas Nonato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-2571a1a5e121686897005bf70dae6206757a48b07ff72dc2bbb9d6ac8af77bf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Computational efficiency</topic><topic>Differential equations</topic><topic>Finite difference method</topic><topic>Frequency division multiplexing</topic><topic>IEEE transactions</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>RNA</topic><topic>Rocket</topic><topic>Rocket engines</topic><topic>Rockets</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>do Nascimento, Eriberto Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Lucas Nonato</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>do Nascimento, Eriberto Oliveira</au><au>de Oliveira, Lucas Nonato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>15</volume><issue>8</issue><spage>1556</spage><epage>1565</epage><pages>1556-1565</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This research arise to optimize the flight trajectory for rockets, for this were applied hybrid techniques, based on the Finite Difference Method (FDM) to obtain the solution of the non-linear differential equations provided by the analytic modeling. So aiming at the optimizations were applied the Artificial Neural Networks (ANN) into two curves of thrust rocket engines, in which was possible to adjust the temporal discretization. The results showed that using ANN, the accuracy increased 26 times relative to the non-optimized results, also to compare with commercial software the biggest error found was 10%. Therefore, it was proven that when applying the ANN that provided excellent results with lower computational cost.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2017.7994806</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2017-01, Vol.15 (8), p.1556-1565 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_1925341332 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Computational efficiency Differential equations Finite difference method Frequency division multiplexing IEEE transactions Mathematical models Neural networks Nonlinear equations Numerical analysis Optimization RNA Rocket Rocket engines Rockets Trajectory |
title | Numerical Optimization of Flight Trajectory for Rockets via Artificial Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Optimization%20of%20Flight%20Trajectory%20for%20Rockets%20via%20Artificial%20Neural%20Networks&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=do%20Nascimento,%20Eriberto%20Oliveira&rft.date=2017-01-01&rft.volume=15&rft.issue=8&rft.spage=1556&rft.epage=1565&rft.pages=1556-1565&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2017.7994806&rft_dat=%3Cproquest_RIE%3E1925341332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925341332&rft_id=info:pmid/&rft_ieee_id=7994806&rfr_iscdi=true |