Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate

Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2017-04, Vol.178, p.286-296
Hauptverfasser: Peña, Gerardo D.J. Guerrero, Raj, Abhijeet, Stephen, Samuel, Anjana, Tharalekshmy, Hammid, Yousef Adnan Said, Brito, Joaquin L., Shoaibi, Ahmed Al
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue
container_start_page 286
container_title Combustion and flame
container_volume 178
creator Peña, Gerardo D.J. Guerrero
Raj, Abhijeet
Stephen, Samuel
Anjana, Tharalekshmy
Hammid, Yousef Adnan Said
Brito, Joaquin L.
Shoaibi, Ahmed Al
description Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.
doi_str_mv 10.1016/j.combustflame.2017.01.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925162422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218017300093</els_id><sourcerecordid>1925162422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</originalsourceid><addsrcrecordid>eNqNUMlOwzAUtBBIlOUfLDgnvOes5oagLFIlOMDZcp1ncJXUxU5A_D0u5cCR00ijWTTD2BlCjoD1xSo3flhOcbS9HigXgE0OmAPIPTbDqqozIQXusxkAQiawhUN2FOMKAJqyKGaMnt6-ojPevNHgjO75JvgNhdFR5N7y6P3IX2lNQY_UcRv8wEffT4nhnbN2is6v-U95vORza8mMP0Y7UZ94_8m3zhN2YHUf6fQXj9nL7fz5-j5bPN49XF8tMlO0csxkAUtDoimxK1Ci1bYra6tra42spGk6TVKUFpYadIkkyla3smgTVk1biLY4Zue73LTifaI4qpWfwjpVKpSiwlqUQiTV5U5lgo8xkFWb4AYdvhSC2t6qVurvrWp7qwJU6dZkvtmZKe34cBRUNI7WhjoX0njVefefmG9eqok9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925162422</pqid></control><display><type>article</type><title>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Peña, Gerardo D.J. Guerrero ; Raj, Abhijeet ; Stephen, Samuel ; Anjana, Tharalekshmy ; Hammid, Yousef Adnan Said ; Brito, Joaquin L. ; Shoaibi, Ahmed Al</creator><creatorcontrib>Peña, Gerardo D.J. Guerrero ; Raj, Abhijeet ; Stephen, Samuel ; Anjana, Tharalekshmy ; Hammid, Yousef Adnan Said ; Brito, Joaquin L. ; Shoaibi, Ahmed Al</creatorcontrib><description>Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2017.01.009</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Aliphatic compounds ; Chemical properties ; Chemical reactions ; Combustion ; Diesel engines ; Diesel fuels ; Diffusion effects ; Diffusion flames ; Diffusion rate ; Electron energy ; Electron energy loss spectroscopy ; Flow velocity ; Fourier analysis ; Fourier transforms ; FTIR ; Fuel flow ; Gasoline ; High resolution ; HRTEM ; Hydrocarbons ; Infrared analysis ; Infrared spectroscopy ; Nanostructures ; Physical properties ; Soot ; Spectroscopic analysis ; Studies ; Toluene ; Transmission electron microscopy ; X-ray diffraction ; XRD</subject><ispartof>Combustion and flame, 2017-04, Vol.178, p.286-296</ispartof><rights>2017 The Combustion Institute</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</citedby><cites>FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218017300093$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Peña, Gerardo D.J. Guerrero</creatorcontrib><creatorcontrib>Raj, Abhijeet</creatorcontrib><creatorcontrib>Stephen, Samuel</creatorcontrib><creatorcontrib>Anjana, Tharalekshmy</creatorcontrib><creatorcontrib>Hammid, Yousef Adnan Said</creatorcontrib><creatorcontrib>Brito, Joaquin L.</creatorcontrib><creatorcontrib>Shoaibi, Ahmed Al</creatorcontrib><title>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</title><title>Combustion and flame</title><description>Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.</description><subject>Aliphatic compounds</subject><subject>Chemical properties</subject><subject>Chemical reactions</subject><subject>Combustion</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Diffusion effects</subject><subject>Diffusion flames</subject><subject>Diffusion rate</subject><subject>Electron energy</subject><subject>Electron energy loss spectroscopy</subject><subject>Flow velocity</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>FTIR</subject><subject>Fuel flow</subject><subject>Gasoline</subject><subject>High resolution</subject><subject>HRTEM</subject><subject>Hydrocarbons</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Nanostructures</subject><subject>Physical properties</subject><subject>Soot</subject><subject>Spectroscopic analysis</subject><subject>Studies</subject><subject>Toluene</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>XRD</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAUtBBIlOUfLDgnvOes5oagLFIlOMDZcp1ncJXUxU5A_D0u5cCR00ijWTTD2BlCjoD1xSo3flhOcbS9HigXgE0OmAPIPTbDqqozIQXusxkAQiawhUN2FOMKAJqyKGaMnt6-ojPevNHgjO75JvgNhdFR5N7y6P3IX2lNQY_UcRv8wEffT4nhnbN2is6v-U95vORza8mMP0Y7UZ94_8m3zhN2YHUf6fQXj9nL7fz5-j5bPN49XF8tMlO0csxkAUtDoimxK1Ci1bYra6tra42spGk6TVKUFpYadIkkyla3smgTVk1biLY4Zue73LTifaI4qpWfwjpVKpSiwlqUQiTV5U5lgo8xkFWb4AYdvhSC2t6qVurvrWp7qwJU6dZkvtmZKe34cBRUNI7WhjoX0njVefefmG9eqok9</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Peña, Gerardo D.J. Guerrero</creator><creator>Raj, Abhijeet</creator><creator>Stephen, Samuel</creator><creator>Anjana, Tharalekshmy</creator><creator>Hammid, Yousef Adnan Said</creator><creator>Brito, Joaquin L.</creator><creator>Shoaibi, Ahmed Al</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170401</creationdate><title>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</title><author>Peña, Gerardo D.J. Guerrero ; Raj, Abhijeet ; Stephen, Samuel ; Anjana, Tharalekshmy ; Hammid, Yousef Adnan Said ; Brito, Joaquin L. ; Shoaibi, Ahmed Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliphatic compounds</topic><topic>Chemical properties</topic><topic>Chemical reactions</topic><topic>Combustion</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Diffusion effects</topic><topic>Diffusion flames</topic><topic>Diffusion rate</topic><topic>Electron energy</topic><topic>Electron energy loss spectroscopy</topic><topic>Flow velocity</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>FTIR</topic><topic>Fuel flow</topic><topic>Gasoline</topic><topic>High resolution</topic><topic>HRTEM</topic><topic>Hydrocarbons</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Nanostructures</topic><topic>Physical properties</topic><topic>Soot</topic><topic>Spectroscopic analysis</topic><topic>Studies</topic><topic>Toluene</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña, Gerardo D.J. Guerrero</creatorcontrib><creatorcontrib>Raj, Abhijeet</creatorcontrib><creatorcontrib>Stephen, Samuel</creatorcontrib><creatorcontrib>Anjana, Tharalekshmy</creatorcontrib><creatorcontrib>Hammid, Yousef Adnan Said</creatorcontrib><creatorcontrib>Brito, Joaquin L.</creatorcontrib><creatorcontrib>Shoaibi, Ahmed Al</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña, Gerardo D.J. Guerrero</au><au>Raj, Abhijeet</au><au>Stephen, Samuel</au><au>Anjana, Tharalekshmy</au><au>Hammid, Yousef Adnan Said</au><au>Brito, Joaquin L.</au><au>Shoaibi, Ahmed Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</atitle><jtitle>Combustion and flame</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>178</volume><spage>286</spage><epage>296</epage><pages>286-296</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2017.01.009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2017-04, Vol.178, p.286-296
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_1925162422
source Elsevier ScienceDirect Journals Complete
subjects Aliphatic compounds
Chemical properties
Chemical reactions
Combustion
Diesel engines
Diesel fuels
Diffusion effects
Diffusion flames
Diffusion rate
Electron energy
Electron energy loss spectroscopy
Flow velocity
Fourier analysis
Fourier transforms
FTIR
Fuel flow
Gasoline
High resolution
HRTEM
Hydrocarbons
Infrared analysis
Infrared spectroscopy
Nanostructures
Physical properties
Soot
Spectroscopic analysis
Studies
Toluene
Transmission electron microscopy
X-ray diffraction
XRD
title Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20properties%20of%20soot%20generated%20from%20toluene%20diffusion%20flames:%20Effects%20of%20fuel%20flow%20rate&rft.jtitle=Combustion%20and%20flame&rft.au=Pe%C3%B1a,%20Gerardo%20D.J.%20Guerrero&rft.date=2017-04-01&rft.volume=178&rft.spage=286&rft.epage=296&rft.pages=286-296&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2017.01.009&rft_dat=%3Cproquest_cross%3E1925162422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925162422&rft_id=info:pmid/&rft_els_id=S0010218017300093&rfr_iscdi=true