Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate
Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. Thi...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2017-04, Vol.178, p.286-296 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | |
container_start_page | 286 |
container_title | Combustion and flame |
container_volume | 178 |
creator | Peña, Gerardo D.J. Guerrero Raj, Abhijeet Stephen, Samuel Anjana, Tharalekshmy Hammid, Yousef Adnan Said Brito, Joaquin L. Shoaibi, Ahmed Al |
description | Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production. |
doi_str_mv | 10.1016/j.combustflame.2017.01.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925162422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218017300093</els_id><sourcerecordid>1925162422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</originalsourceid><addsrcrecordid>eNqNUMlOwzAUtBBIlOUfLDgnvOes5oagLFIlOMDZcp1ncJXUxU5A_D0u5cCR00ijWTTD2BlCjoD1xSo3flhOcbS9HigXgE0OmAPIPTbDqqozIQXusxkAQiawhUN2FOMKAJqyKGaMnt6-ojPevNHgjO75JvgNhdFR5N7y6P3IX2lNQY_UcRv8wEffT4nhnbN2is6v-U95vORza8mMP0Y7UZ94_8m3zhN2YHUf6fQXj9nL7fz5-j5bPN49XF8tMlO0csxkAUtDoimxK1Ci1bYra6tra42spGk6TVKUFpYadIkkyla3smgTVk1biLY4Zue73LTifaI4qpWfwjpVKpSiwlqUQiTV5U5lgo8xkFWb4AYdvhSC2t6qVurvrWp7qwJU6dZkvtmZKe34cBRUNI7WhjoX0njVefefmG9eqok9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925162422</pqid></control><display><type>article</type><title>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Peña, Gerardo D.J. Guerrero ; Raj, Abhijeet ; Stephen, Samuel ; Anjana, Tharalekshmy ; Hammid, Yousef Adnan Said ; Brito, Joaquin L. ; Shoaibi, Ahmed Al</creator><creatorcontrib>Peña, Gerardo D.J. Guerrero ; Raj, Abhijeet ; Stephen, Samuel ; Anjana, Tharalekshmy ; Hammid, Yousef Adnan Said ; Brito, Joaquin L. ; Shoaibi, Ahmed Al</creatorcontrib><description>Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2017.01.009</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Aliphatic compounds ; Chemical properties ; Chemical reactions ; Combustion ; Diesel engines ; Diesel fuels ; Diffusion effects ; Diffusion flames ; Diffusion rate ; Electron energy ; Electron energy loss spectroscopy ; Flow velocity ; Fourier analysis ; Fourier transforms ; FTIR ; Fuel flow ; Gasoline ; High resolution ; HRTEM ; Hydrocarbons ; Infrared analysis ; Infrared spectroscopy ; Nanostructures ; Physical properties ; Soot ; Spectroscopic analysis ; Studies ; Toluene ; Transmission electron microscopy ; X-ray diffraction ; XRD</subject><ispartof>Combustion and flame, 2017-04, Vol.178, p.286-296</ispartof><rights>2017 The Combustion Institute</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</citedby><cites>FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218017300093$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Peña, Gerardo D.J. Guerrero</creatorcontrib><creatorcontrib>Raj, Abhijeet</creatorcontrib><creatorcontrib>Stephen, Samuel</creatorcontrib><creatorcontrib>Anjana, Tharalekshmy</creatorcontrib><creatorcontrib>Hammid, Yousef Adnan Said</creatorcontrib><creatorcontrib>Brito, Joaquin L.</creatorcontrib><creatorcontrib>Shoaibi, Ahmed Al</creatorcontrib><title>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</title><title>Combustion and flame</title><description>Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.</description><subject>Aliphatic compounds</subject><subject>Chemical properties</subject><subject>Chemical reactions</subject><subject>Combustion</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Diffusion effects</subject><subject>Diffusion flames</subject><subject>Diffusion rate</subject><subject>Electron energy</subject><subject>Electron energy loss spectroscopy</subject><subject>Flow velocity</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>FTIR</subject><subject>Fuel flow</subject><subject>Gasoline</subject><subject>High resolution</subject><subject>HRTEM</subject><subject>Hydrocarbons</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Nanostructures</subject><subject>Physical properties</subject><subject>Soot</subject><subject>Spectroscopic analysis</subject><subject>Studies</subject><subject>Toluene</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><subject>XRD</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAUtBBIlOUfLDgnvOes5oagLFIlOMDZcp1ncJXUxU5A_D0u5cCR00ijWTTD2BlCjoD1xSo3flhOcbS9HigXgE0OmAPIPTbDqqozIQXusxkAQiawhUN2FOMKAJqyKGaMnt6-ojPevNHgjO75JvgNhdFR5N7y6P3IX2lNQY_UcRv8wEffT4nhnbN2is6v-U95vORza8mMP0Y7UZ94_8m3zhN2YHUf6fQXj9nL7fz5-j5bPN49XF8tMlO0csxkAUtDoimxK1Ci1bYra6tra42spGk6TVKUFpYadIkkyla3smgTVk1biLY4Zue73LTifaI4qpWfwjpVKpSiwlqUQiTV5U5lgo8xkFWb4AYdvhSC2t6qVurvrWp7qwJU6dZkvtmZKe34cBRUNI7WhjoX0njVefefmG9eqok9</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Peña, Gerardo D.J. Guerrero</creator><creator>Raj, Abhijeet</creator><creator>Stephen, Samuel</creator><creator>Anjana, Tharalekshmy</creator><creator>Hammid, Yousef Adnan Said</creator><creator>Brito, Joaquin L.</creator><creator>Shoaibi, Ahmed Al</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170401</creationdate><title>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</title><author>Peña, Gerardo D.J. Guerrero ; Raj, Abhijeet ; Stephen, Samuel ; Anjana, Tharalekshmy ; Hammid, Yousef Adnan Said ; Brito, Joaquin L. ; Shoaibi, Ahmed Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-930bce2741d3191fafd46fa6ffc959c7dae924f0ba0a41e248a89382485783283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliphatic compounds</topic><topic>Chemical properties</topic><topic>Chemical reactions</topic><topic>Combustion</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Diffusion effects</topic><topic>Diffusion flames</topic><topic>Diffusion rate</topic><topic>Electron energy</topic><topic>Electron energy loss spectroscopy</topic><topic>Flow velocity</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>FTIR</topic><topic>Fuel flow</topic><topic>Gasoline</topic><topic>High resolution</topic><topic>HRTEM</topic><topic>Hydrocarbons</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Nanostructures</topic><topic>Physical properties</topic><topic>Soot</topic><topic>Spectroscopic analysis</topic><topic>Studies</topic><topic>Toluene</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peña, Gerardo D.J. Guerrero</creatorcontrib><creatorcontrib>Raj, Abhijeet</creatorcontrib><creatorcontrib>Stephen, Samuel</creatorcontrib><creatorcontrib>Anjana, Tharalekshmy</creatorcontrib><creatorcontrib>Hammid, Yousef Adnan Said</creatorcontrib><creatorcontrib>Brito, Joaquin L.</creatorcontrib><creatorcontrib>Shoaibi, Ahmed Al</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peña, Gerardo D.J. Guerrero</au><au>Raj, Abhijeet</au><au>Stephen, Samuel</au><au>Anjana, Tharalekshmy</au><au>Hammid, Yousef Adnan Said</au><au>Brito, Joaquin L.</au><au>Shoaibi, Ahmed Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate</atitle><jtitle>Combustion and flame</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>178</volume><spage>286</spage><epage>296</epage><pages>286-296</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Aromatic hydrocarbons are commonly found in fossil-derived transportation fuels, and their combustion in engines produce most of the observed soot particles. Toluene is an important component of gasoline (about 6wt%), diesel (1–2wt%), and jet fuels (1–2wt%), and forms a part of their surrogates. This paper reports the nanostructures and chemical constituents of soot, formed in toluene diffusion flames at different fuel flow rates. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) are employed to study the physical properties of soot, while Fourier transform infrared spectroscopy (FTIR), electron energy loss spectroscopy (EELS), and elemental analysis are used to investigate its chemical properties. With increasing fuel flow rate, HRTEM and XRD analyses showed that the lateral size of aromatic layers in soot reduced, while the FTIR analysis revealed that the concentration of aliphatic and oxygenated groups decreased, and that of aromatic group increased. The elemental analysis showed that soot from lower fuel flow rates had more hydrogen and oxygen content than those from higher flow rates. The experimental observations indicate that both physical and chemical characteristics of soot derived from toluene flame are dependent on the fuel flow rate used for its production.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2017.01.009</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2017-04, Vol.178, p.286-296 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_1925162422 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aliphatic compounds Chemical properties Chemical reactions Combustion Diesel engines Diesel fuels Diffusion effects Diffusion flames Diffusion rate Electron energy Electron energy loss spectroscopy Flow velocity Fourier analysis Fourier transforms FTIR Fuel flow Gasoline High resolution HRTEM Hydrocarbons Infrared analysis Infrared spectroscopy Nanostructures Physical properties Soot Spectroscopic analysis Studies Toluene Transmission electron microscopy X-ray diffraction XRD |
title | Physicochemical properties of soot generated from toluene diffusion flames: Effects of fuel flow rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20properties%20of%20soot%20generated%20from%20toluene%20diffusion%20flames:%20Effects%20of%20fuel%20flow%20rate&rft.jtitle=Combustion%20and%20flame&rft.au=Pe%C3%B1a,%20Gerardo%20D.J.%20Guerrero&rft.date=2017-04-01&rft.volume=178&rft.spage=286&rft.epage=296&rft.pages=286-296&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2017.01.009&rft_dat=%3Cproquest_cross%3E1925162422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925162422&rft_id=info:pmid/&rft_els_id=S0010218017300093&rfr_iscdi=true |