A sectional PAH model with reversible PAH chemistry for CFD soot simulations
A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size dist...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2017-05, Vol.179, p.63-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | |
container_start_page | 63 |
container_title | Combustion and flame |
container_volume | 179 |
creator | Eberle, C. Gerlinger, P. Aigner, M. |
description | A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly. |
doi_str_mv | 10.1016/j.combustflame.2017.01.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925159727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218017300196</els_id><sourcerecordid>1925159727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEuXnHSw4J-w6SVNzq1pKkSrBAc5WbG9UR0ld7LSob09KOXBEGmkPOzPSfIzdIaQIOH5oUuM7vYt93VYdpQKwTAEHyTM2wqIYJ0IKPGcjAIRE4AQu2VWMDQCUeZaN2GrKI5ne-U3V8rfpknfeUsu_XL_mgfYUotMt_XzMmjoX-3DgtQ98tpjz6H3Po-t2bXVsiDfsoq7aSLe_95p9LJ7eZ8tk9fr8MpuuEpPn2CdaiNygtFkty7xELTDTlFlb56hBj63RMkMLtZnkYyBZARREujDW0sRgUWXX7P7Uuw3-c0exV43fhWFBVChFgYUsRTm4Hk8uE3yMgWq1Da6rwkEhqCM91ai_9NSRngIcJIfw_BSmYcfeUVDRONoYsi4MvJT17j813zTVf4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925159727</pqid></control><display><type>article</type><title>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Eberle, C. ; Gerlinger, P. ; Aigner, M.</creator><creatorcontrib>Eberle, C. ; Gerlinger, P. ; Aigner, M.</creatorcontrib><description>A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2017.01.019</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Benzene ; Combustion ; Computational efficiency ; Computer simulation ; Equivalence ratio ; Ethylene ; Fluid dynamics ; Hydrocarbons ; Nucleation ; Particle size ; Particle size distribution ; Polycyclic aromatic hydrocarbons ; Polycyclic aromatic hydrocarbons (PAHs) ; Premixed flames ; Pyrolysis ; Reduced PAH chemistry ; Sectional approach ; Shock waves ; Simulation ; Soot ; Studies ; Toluene</subject><ispartof>Combustion and flame, 2017-05, Vol.179, p.63-73</ispartof><rights>2017 The Combustion Institute</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</citedby><cites>FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</cites><orcidid>0000-0002-8949-9615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218017300196$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids></links><search><creatorcontrib>Eberle, C.</creatorcontrib><creatorcontrib>Gerlinger, P.</creatorcontrib><creatorcontrib>Aigner, M.</creatorcontrib><title>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</title><title>Combustion and flame</title><description>A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.</description><subject>Benzene</subject><subject>Combustion</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Equivalence ratio</subject><subject>Ethylene</subject><subject>Fluid dynamics</subject><subject>Hydrocarbons</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polycyclic aromatic hydrocarbons (PAHs)</subject><subject>Premixed flames</subject><subject>Pyrolysis</subject><subject>Reduced PAH chemistry</subject><subject>Sectional approach</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Soot</subject><subject>Studies</subject><subject>Toluene</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEuXnHSw4J-w6SVNzq1pKkSrBAc5WbG9UR0ld7LSob09KOXBEGmkPOzPSfIzdIaQIOH5oUuM7vYt93VYdpQKwTAEHyTM2wqIYJ0IKPGcjAIRE4AQu2VWMDQCUeZaN2GrKI5ne-U3V8rfpknfeUsu_XL_mgfYUotMt_XzMmjoX-3DgtQ98tpjz6H3Po-t2bXVsiDfsoq7aSLe_95p9LJ7eZ8tk9fr8MpuuEpPn2CdaiNygtFkty7xELTDTlFlb56hBj63RMkMLtZnkYyBZARREujDW0sRgUWXX7P7Uuw3-c0exV43fhWFBVChFgYUsRTm4Hk8uE3yMgWq1Da6rwkEhqCM91ai_9NSRngIcJIfw_BSmYcfeUVDRONoYsi4MvJT17j813zTVf4U</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Eberle, C.</creator><creator>Gerlinger, P.</creator><creator>Aigner, M.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8949-9615</orcidid></search><sort><creationdate>20170501</creationdate><title>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</title><author>Eberle, C. ; Gerlinger, P. ; Aigner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benzene</topic><topic>Combustion</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Equivalence ratio</topic><topic>Ethylene</topic><topic>Fluid dynamics</topic><topic>Hydrocarbons</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polycyclic aromatic hydrocarbons (PAHs)</topic><topic>Premixed flames</topic><topic>Pyrolysis</topic><topic>Reduced PAH chemistry</topic><topic>Sectional approach</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Soot</topic><topic>Studies</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberle, C.</creatorcontrib><creatorcontrib>Gerlinger, P.</creatorcontrib><creatorcontrib>Aigner, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberle, C.</au><au>Gerlinger, P.</au><au>Aigner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</atitle><jtitle>Combustion and flame</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>179</volume><spage>63</spage><epage>73</epage><pages>63-73</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2017.01.019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8949-9615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2017-05, Vol.179, p.63-73 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_1925159727 |
source | Elsevier ScienceDirect Journals |
subjects | Benzene Combustion Computational efficiency Computer simulation Equivalence ratio Ethylene Fluid dynamics Hydrocarbons Nucleation Particle size Particle size distribution Polycyclic aromatic hydrocarbons Polycyclic aromatic hydrocarbons (PAHs) Premixed flames Pyrolysis Reduced PAH chemistry Sectional approach Shock waves Simulation Soot Studies Toluene |
title | A sectional PAH model with reversible PAH chemistry for CFD soot simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sectional%20PAH%20model%20with%20reversible%20PAH%20chemistry%20for%20CFD%20soot%20simulations&rft.jtitle=Combustion%20and%20flame&rft.au=Eberle,%20C.&rft.date=2017-05-01&rft.volume=179&rft.spage=63&rft.epage=73&rft.pages=63-73&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2017.01.019&rft_dat=%3Cproquest_cross%3E1925159727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925159727&rft_id=info:pmid/&rft_els_id=S0010218017300196&rfr_iscdi=true |