A sectional PAH model with reversible PAH chemistry for CFD soot simulations

A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2017-05, Vol.179, p.63-73
Hauptverfasser: Eberle, C., Gerlinger, P., Aigner, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 63
container_title Combustion and flame
container_volume 179
creator Eberle, C.
Gerlinger, P.
Aigner, M.
description A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.
doi_str_mv 10.1016/j.combustflame.2017.01.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925159727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218017300196</els_id><sourcerecordid>1925159727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EEuXnHSw4J-w6SVNzq1pKkSrBAc5WbG9UR0ld7LSob09KOXBEGmkPOzPSfIzdIaQIOH5oUuM7vYt93VYdpQKwTAEHyTM2wqIYJ0IKPGcjAIRE4AQu2VWMDQCUeZaN2GrKI5ne-U3V8rfpknfeUsu_XL_mgfYUotMt_XzMmjoX-3DgtQ98tpjz6H3Po-t2bXVsiDfsoq7aSLe_95p9LJ7eZ8tk9fr8MpuuEpPn2CdaiNygtFkty7xELTDTlFlb56hBj63RMkMLtZnkYyBZARREujDW0sRgUWXX7P7Uuw3-c0exV43fhWFBVChFgYUsRTm4Hk8uE3yMgWq1Da6rwkEhqCM91ai_9NSRngIcJIfw_BSmYcfeUVDRONoYsi4MvJT17j813zTVf4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925159727</pqid></control><display><type>article</type><title>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Eberle, C. ; Gerlinger, P. ; Aigner, M.</creator><creatorcontrib>Eberle, C. ; Gerlinger, P. ; Aigner, M.</creatorcontrib><description>A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2017.01.019</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Benzene ; Combustion ; Computational efficiency ; Computer simulation ; Equivalence ratio ; Ethylene ; Fluid dynamics ; Hydrocarbons ; Nucleation ; Particle size ; Particle size distribution ; Polycyclic aromatic hydrocarbons ; Polycyclic aromatic hydrocarbons (PAHs) ; Premixed flames ; Pyrolysis ; Reduced PAH chemistry ; Sectional approach ; Shock waves ; Simulation ; Soot ; Studies ; Toluene</subject><ispartof>Combustion and flame, 2017-05, Vol.179, p.63-73</ispartof><rights>2017 The Combustion Institute</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</citedby><cites>FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</cites><orcidid>0000-0002-8949-9615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218017300196$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27902,27903,65308</link.rule.ids></links><search><creatorcontrib>Eberle, C.</creatorcontrib><creatorcontrib>Gerlinger, P.</creatorcontrib><creatorcontrib>Aigner, M.</creatorcontrib><title>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</title><title>Combustion and flame</title><description>A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.</description><subject>Benzene</subject><subject>Combustion</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Equivalence ratio</subject><subject>Ethylene</subject><subject>Fluid dynamics</subject><subject>Hydrocarbons</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Polycyclic aromatic hydrocarbons (PAHs)</subject><subject>Premixed flames</subject><subject>Pyrolysis</subject><subject>Reduced PAH chemistry</subject><subject>Sectional approach</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Soot</subject><subject>Studies</subject><subject>Toluene</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EEuXnHSw4J-w6SVNzq1pKkSrBAc5WbG9UR0ld7LSob09KOXBEGmkPOzPSfIzdIaQIOH5oUuM7vYt93VYdpQKwTAEHyTM2wqIYJ0IKPGcjAIRE4AQu2VWMDQCUeZaN2GrKI5ne-U3V8rfpknfeUsu_XL_mgfYUotMt_XzMmjoX-3DgtQ98tpjz6H3Po-t2bXVsiDfsoq7aSLe_95p9LJ7eZ8tk9fr8MpuuEpPn2CdaiNygtFkty7xELTDTlFlb56hBj63RMkMLtZnkYyBZARREujDW0sRgUWXX7P7Uuw3-c0exV43fhWFBVChFgYUsRTm4Hk8uE3yMgWq1Da6rwkEhqCM91ai_9NSRngIcJIfw_BSmYcfeUVDRONoYsi4MvJT17j813zTVf4U</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Eberle, C.</creator><creator>Gerlinger, P.</creator><creator>Aigner, M.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8949-9615</orcidid></search><sort><creationdate>20170501</creationdate><title>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</title><author>Eberle, C. ; Gerlinger, P. ; Aigner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b224c19d3f97471b213be3ddf41b0b6dcb931d0fc8460e9a005eeb5cdde8c15a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benzene</topic><topic>Combustion</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Equivalence ratio</topic><topic>Ethylene</topic><topic>Fluid dynamics</topic><topic>Hydrocarbons</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Polycyclic aromatic hydrocarbons (PAHs)</topic><topic>Premixed flames</topic><topic>Pyrolysis</topic><topic>Reduced PAH chemistry</topic><topic>Sectional approach</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Soot</topic><topic>Studies</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberle, C.</creatorcontrib><creatorcontrib>Gerlinger, P.</creatorcontrib><creatorcontrib>Aigner, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberle, C.</au><au>Gerlinger, P.</au><au>Aigner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sectional PAH model with reversible PAH chemistry for CFD soot simulations</atitle><jtitle>Combustion and flame</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>179</volume><spage>63</spage><epage>73</epage><pages>63-73</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>A novel sectional approach for the modeling of polycyclic aromatic hydrocarbons (PAHs) is presented. The PAH model includes PAH radicals and is based on a reversible PAH growth mechanism. Combustion of species up to benzene and toluene is treated by finite-rate chemistry. The soot particle size distribution (PSD) is discretized by a sectional approach. Soot, PAHs, and the thermo-chemical state of the gas phase are fully coupled by a simultaneous solution of all governing equations. The new PAH model has been validated for a series of combustion configurations and shows significant improvements compared to irreversible PAH models at basically no increase in computational cost. Compared to irreversible PAH models, soot nucleation is significantly slower, yielding a better agreement to measured soot volume fractions in a series of laminar premixed flames. Moreover, the model developments led to correct predictions of the temperature dependency of the soot yield in ethylene pyrolysis after reflected shock waves. Finally, it will be shown that the new model describes the influence of the equivalence ratio on soot PSD functions correctly.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2017.01.019</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8949-9615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2017-05, Vol.179, p.63-73
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_1925159727
source Elsevier ScienceDirect Journals
subjects Benzene
Combustion
Computational efficiency
Computer simulation
Equivalence ratio
Ethylene
Fluid dynamics
Hydrocarbons
Nucleation
Particle size
Particle size distribution
Polycyclic aromatic hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs)
Premixed flames
Pyrolysis
Reduced PAH chemistry
Sectional approach
Shock waves
Simulation
Soot
Studies
Toluene
title A sectional PAH model with reversible PAH chemistry for CFD soot simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sectional%20PAH%20model%20with%20reversible%20PAH%20chemistry%20for%20CFD%20soot%20simulations&rft.jtitle=Combustion%20and%20flame&rft.au=Eberle,%20C.&rft.date=2017-05-01&rft.volume=179&rft.spage=63&rft.epage=73&rft.pages=63-73&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2017.01.019&rft_dat=%3Cproquest_cross%3E1925159727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925159727&rft_id=info:pmid/&rft_els_id=S0010218017300196&rfr_iscdi=true