Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes
Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugat...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2017-06, Vol.145, p.40-45 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 40 |
container_title | Composites science and technology |
container_volume | 145 |
creator | Zhou, Xiaoyan Pan, Chengjun Liang, Ansheng Wang, Lei Wong, Wai-Yeung |
description | Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K. |
doi_str_mv | 10.1016/j.compscitech.2017.03.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925159500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353816315585</els_id><sourcerecordid>1925159500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</originalsourceid><addsrcrecordid>eNqNkEGL2zAQhcXShabZ_gctPds7Y1mOdSyh7S4E9pI9C1kaYYXEciUnpf31VUgPPe5pBua9N7yPsUeEGgG7p0Nt42nONixkx7oB3NQgamjhjq2w36gKQcIHtoKm6yohRf-Rfcr5AAAbqZoVO-5HSqdIR7JLCpbPKc6UlkCZR8-v2TGXbO7D8ZTLlWaTyPFfYRn5QNOf6MoW4jzSRNxRChezhEtxm8lxa9IQJz6ZKS7ngfIDu_fmmOnzv7lmb9-_7bfP1e71x8v2666yolVLJb3pyaORLTbSDiR7b0AIh4OwrlOt3FBDTTf0fataRBIdGjc0A3qHxisp1uzLLbe0-XmmvOhDPKepvNSoGolSSYCiUjeVTTHnRF7PKZxM-q0R9BWuPuj_4OorXA1CF7jFu715qdS4BEq6qGiy5EIqJLWL4R0pfwHKRoxj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925159500</pqid></control><display><type>article</type><title>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhou, Xiaoyan ; Pan, Chengjun ; Liang, Ansheng ; Wang, Lei ; Wong, Wai-Yeung</creator><creatorcontrib>Zhou, Xiaoyan ; Pan, Chengjun ; Liang, Ansheng ; Wang, Lei ; Wong, Wai-Yeung</creatorcontrib><description>Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2017.03.040</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carbon ; Carbon nanotubes ; Carrier density ; Carrier mobility ; Chemical synthesis ; Conducting polymer ; Differential scanning calorimetry ; Field effect transistors ; Gravimetric analysis ; Heat measurement ; Liquid chromatography ; Nanotubes ; NMR ; Nuclear magnetic resonance ; Photovoltaic cells ; Polymer-matrix composites (PMCs) ; Polymers ; Semiconductor devices ; Single wall carbon nanotubes ; Solar cells ; Spectrum analysis ; Studies ; Thermal analysis ; Thermoelectric materials ; Thermoelectric performance ; Thermogravimetric analysis</subject><ispartof>Composites science and technology, 2017-06, Vol.145, p.40-45</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 16, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</citedby><cites>FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2017.03.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhou, Xiaoyan</creatorcontrib><creatorcontrib>Pan, Chengjun</creatorcontrib><creatorcontrib>Liang, Ansheng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wong, Wai-Yeung</creatorcontrib><title>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</title><title>Composites science and technology</title><description>Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Chemical synthesis</subject><subject>Conducting polymer</subject><subject>Differential scanning calorimetry</subject><subject>Field effect transistors</subject><subject>Gravimetric analysis</subject><subject>Heat measurement</subject><subject>Liquid chromatography</subject><subject>Nanotubes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photovoltaic cells</subject><subject>Polymer-matrix composites (PMCs)</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Single wall carbon nanotubes</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Thermal analysis</subject><subject>Thermoelectric materials</subject><subject>Thermoelectric performance</subject><subject>Thermogravimetric analysis</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEGL2zAQhcXShabZ_gctPds7Y1mOdSyh7S4E9pI9C1kaYYXEciUnpf31VUgPPe5pBua9N7yPsUeEGgG7p0Nt42nONixkx7oB3NQgamjhjq2w36gKQcIHtoKm6yohRf-Rfcr5AAAbqZoVO-5HSqdIR7JLCpbPKc6UlkCZR8-v2TGXbO7D8ZTLlWaTyPFfYRn5QNOf6MoW4jzSRNxRChezhEtxm8lxa9IQJz6ZKS7ngfIDu_fmmOnzv7lmb9-_7bfP1e71x8v2666yolVLJb3pyaORLTbSDiR7b0AIh4OwrlOt3FBDTTf0fataRBIdGjc0A3qHxisp1uzLLbe0-XmmvOhDPKepvNSoGolSSYCiUjeVTTHnRF7PKZxM-q0R9BWuPuj_4OorXA1CF7jFu715qdS4BEq6qGiy5EIqJLWL4R0pfwHKRoxj</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Zhou, Xiaoyan</creator><creator>Pan, Chengjun</creator><creator>Liang, Ansheng</creator><creator>Wang, Lei</creator><creator>Wong, Wai-Yeung</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170616</creationdate><title>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</title><author>Zhou, Xiaoyan ; Pan, Chengjun ; Liang, Ansheng ; Wang, Lei ; Wong, Wai-Yeung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Chemical synthesis</topic><topic>Conducting polymer</topic><topic>Differential scanning calorimetry</topic><topic>Field effect transistors</topic><topic>Gravimetric analysis</topic><topic>Heat measurement</topic><topic>Liquid chromatography</topic><topic>Nanotubes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photovoltaic cells</topic><topic>Polymer-matrix composites (PMCs)</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Single wall carbon nanotubes</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Thermal analysis</topic><topic>Thermoelectric materials</topic><topic>Thermoelectric performance</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaoyan</creatorcontrib><creatorcontrib>Pan, Chengjun</creatorcontrib><creatorcontrib>Liang, Ansheng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wong, Wai-Yeung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaoyan</au><au>Pan, Chengjun</au><au>Liang, Ansheng</au><au>Wang, Lei</au><au>Wong, Wai-Yeung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</atitle><jtitle>Composites science and technology</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>145</volume><spage>40</spage><epage>45</epage><pages>40-45</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2017.03.040</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2017-06, Vol.145, p.40-45 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_1925159500 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Carbon Carbon nanotubes Carrier density Carrier mobility Chemical synthesis Conducting polymer Differential scanning calorimetry Field effect transistors Gravimetric analysis Heat measurement Liquid chromatography Nanotubes NMR Nuclear magnetic resonance Photovoltaic cells Polymer-matrix composites (PMCs) Polymers Semiconductor devices Single wall carbon nanotubes Solar cells Spectrum analysis Studies Thermal analysis Thermoelectric materials Thermoelectric performance Thermogravimetric analysis |
title | Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20composite%20films%20prepared%20with%20benzodithiophene%20derivatives%20and%20carbon%20nanotubes&rft.jtitle=Composites%20science%20and%20technology&rft.au=Zhou,%20Xiaoyan&rft.date=2017-06-16&rft.volume=145&rft.spage=40&rft.epage=45&rft.pages=40-45&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2017.03.040&rft_dat=%3Cproquest_cross%3E1925159500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925159500&rft_id=info:pmid/&rft_els_id=S0266353816315585&rfr_iscdi=true |