Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes

Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2017-06, Vol.145, p.40-45
Hauptverfasser: Zhou, Xiaoyan, Pan, Chengjun, Liang, Ansheng, Wang, Lei, Wong, Wai-Yeung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 40
container_title Composites science and technology
container_volume 145
creator Zhou, Xiaoyan
Pan, Chengjun
Liang, Ansheng
Wang, Lei
Wong, Wai-Yeung
description Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.
doi_str_mv 10.1016/j.compscitech.2017.03.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925159500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353816315585</els_id><sourcerecordid>1925159500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</originalsourceid><addsrcrecordid>eNqNkEGL2zAQhcXShabZ_gctPds7Y1mOdSyh7S4E9pI9C1kaYYXEciUnpf31VUgPPe5pBua9N7yPsUeEGgG7p0Nt42nONixkx7oB3NQgamjhjq2w36gKQcIHtoKm6yohRf-Rfcr5AAAbqZoVO-5HSqdIR7JLCpbPKc6UlkCZR8-v2TGXbO7D8ZTLlWaTyPFfYRn5QNOf6MoW4jzSRNxRChezhEtxm8lxa9IQJz6ZKS7ngfIDu_fmmOnzv7lmb9-_7bfP1e71x8v2666yolVLJb3pyaORLTbSDiR7b0AIh4OwrlOt3FBDTTf0fataRBIdGjc0A3qHxisp1uzLLbe0-XmmvOhDPKepvNSoGolSSYCiUjeVTTHnRF7PKZxM-q0R9BWuPuj_4OorXA1CF7jFu715qdS4BEq6qGiy5EIqJLWL4R0pfwHKRoxj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925159500</pqid></control><display><type>article</type><title>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhou, Xiaoyan ; Pan, Chengjun ; Liang, Ansheng ; Wang, Lei ; Wong, Wai-Yeung</creator><creatorcontrib>Zhou, Xiaoyan ; Pan, Chengjun ; Liang, Ansheng ; Wang, Lei ; Wong, Wai-Yeung</creatorcontrib><description>Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2017.03.040</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carbon ; Carbon nanotubes ; Carrier density ; Carrier mobility ; Chemical synthesis ; Conducting polymer ; Differential scanning calorimetry ; Field effect transistors ; Gravimetric analysis ; Heat measurement ; Liquid chromatography ; Nanotubes ; NMR ; Nuclear magnetic resonance ; Photovoltaic cells ; Polymer-matrix composites (PMCs) ; Polymers ; Semiconductor devices ; Single wall carbon nanotubes ; Solar cells ; Spectrum analysis ; Studies ; Thermal analysis ; Thermoelectric materials ; Thermoelectric performance ; Thermogravimetric analysis</subject><ispartof>Composites science and technology, 2017-06, Vol.145, p.40-45</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 16, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</citedby><cites>FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2017.03.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhou, Xiaoyan</creatorcontrib><creatorcontrib>Pan, Chengjun</creatorcontrib><creatorcontrib>Liang, Ansheng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wong, Wai-Yeung</creatorcontrib><title>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</title><title>Composites science and technology</title><description>Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Chemical synthesis</subject><subject>Conducting polymer</subject><subject>Differential scanning calorimetry</subject><subject>Field effect transistors</subject><subject>Gravimetric analysis</subject><subject>Heat measurement</subject><subject>Liquid chromatography</subject><subject>Nanotubes</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Photovoltaic cells</subject><subject>Polymer-matrix composites (PMCs)</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Single wall carbon nanotubes</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Thermal analysis</subject><subject>Thermoelectric materials</subject><subject>Thermoelectric performance</subject><subject>Thermogravimetric analysis</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEGL2zAQhcXShabZ_gctPds7Y1mOdSyh7S4E9pI9C1kaYYXEciUnpf31VUgPPe5pBua9N7yPsUeEGgG7p0Nt42nONixkx7oB3NQgamjhjq2w36gKQcIHtoKm6yohRf-Rfcr5AAAbqZoVO-5HSqdIR7JLCpbPKc6UlkCZR8-v2TGXbO7D8ZTLlWaTyPFfYRn5QNOf6MoW4jzSRNxRChezhEtxm8lxa9IQJz6ZKS7ngfIDu_fmmOnzv7lmb9-_7bfP1e71x8v2666yolVLJb3pyaORLTbSDiR7b0AIh4OwrlOt3FBDTTf0fataRBIdGjc0A3qHxisp1uzLLbe0-XmmvOhDPKepvNSoGolSSYCiUjeVTTHnRF7PKZxM-q0R9BWuPuj_4OorXA1CF7jFu715qdS4BEq6qGiy5EIqJLWL4R0pfwHKRoxj</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Zhou, Xiaoyan</creator><creator>Pan, Chengjun</creator><creator>Liang, Ansheng</creator><creator>Wang, Lei</creator><creator>Wong, Wai-Yeung</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170616</creationdate><title>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</title><author>Zhou, Xiaoyan ; Pan, Chengjun ; Liang, Ansheng ; Wang, Lei ; Wong, Wai-Yeung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5fa8ef1a54125cbe58fa033d1b3cd69457e2e26b8849411e361adb2b1fd1af953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Chemical synthesis</topic><topic>Conducting polymer</topic><topic>Differential scanning calorimetry</topic><topic>Field effect transistors</topic><topic>Gravimetric analysis</topic><topic>Heat measurement</topic><topic>Liquid chromatography</topic><topic>Nanotubes</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Photovoltaic cells</topic><topic>Polymer-matrix composites (PMCs)</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Single wall carbon nanotubes</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Thermal analysis</topic><topic>Thermoelectric materials</topic><topic>Thermoelectric performance</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaoyan</creatorcontrib><creatorcontrib>Pan, Chengjun</creatorcontrib><creatorcontrib>Liang, Ansheng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wong, Wai-Yeung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaoyan</au><au>Pan, Chengjun</au><au>Liang, Ansheng</au><au>Wang, Lei</au><au>Wong, Wai-Yeung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes</atitle><jtitle>Composites science and technology</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>145</volume><spage>40</spage><epage>45</epage><pages>40-45</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Benzodithiophene (BDT)-based conjugated polymers have garnered considerable interest due to their planar backbones and improved carrier mobility, and have found wide application in organic field-effect transistors and organic photovoltaics. However, there are few reports on the use of these conjugated polymers as thermoelectric materials. In this work, the conjugated polymer poly(benzo[1,2-b:4,5-b’]dithiophene-alt-3,4-ethylenedioxythiophene) (PBDT-EDOT) was synthesized to investigate the thermoelectric behavior of its composite films with single-walled carbon nanotubes (SWCNTs). The polymer was characterized by 1H NMR, gel permeation chromatography, thermal gravimetric analysis and differential scanning calorimetry. The thermoelectric properties, carrier concentration and mobility of the composite films were also measured. It was found that the composite with an SWCNT content of 30% exhibited a high Seebeck coefficient of 82.1 μV K−1 at room temperature. Additionally, for composites with SWCNT contents below 90%, the power factors reached the highest values at the glass transition point of PBDT-EDOT in the temperature range of 300–400 K.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2017.03.040</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2017-06, Vol.145, p.40-45
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_1925159500
source Elsevier ScienceDirect Journals Complete
subjects Carbon
Carbon nanotubes
Carrier density
Carrier mobility
Chemical synthesis
Conducting polymer
Differential scanning calorimetry
Field effect transistors
Gravimetric analysis
Heat measurement
Liquid chromatography
Nanotubes
NMR
Nuclear magnetic resonance
Photovoltaic cells
Polymer-matrix composites (PMCs)
Polymers
Semiconductor devices
Single wall carbon nanotubes
Solar cells
Spectrum analysis
Studies
Thermal analysis
Thermoelectric materials
Thermoelectric performance
Thermogravimetric analysis
title Thermoelectric properties of composite films prepared with benzodithiophene derivatives and carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20composite%20films%20prepared%20with%20benzodithiophene%20derivatives%20and%20carbon%20nanotubes&rft.jtitle=Composites%20science%20and%20technology&rft.au=Zhou,%20Xiaoyan&rft.date=2017-06-16&rft.volume=145&rft.spage=40&rft.epage=45&rft.pages=40-45&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2017.03.040&rft_dat=%3Cproquest_cross%3E1925159500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925159500&rft_id=info:pmid/&rft_els_id=S0266353816315585&rfr_iscdi=true