Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending
The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2017-01, Vol.138, p.117-123 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 123 |
---|---|
container_issue | |
container_start_page | 117 |
container_title | Composites science and technology |
container_volume | 138 |
creator | Yamada, Yoshinori Iwata, Kazuki Kadowaki, Tomoaki Sumiya, Toshihiko |
description | The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory. |
doi_str_mv | 10.1016/j.compscitech.2016.11.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925156914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353816305358</els_id><sourcerecordid>1925156914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</originalsourceid><addsrcrecordid>eNqNkM1O5DAQhK0VK-0A-w5ecU5wx4knPqIRfxIIhOZuOXZ7xlGIBztB4sajr8PsYY-cWqruKlV_hPwBVgIDcdmXJrwekvETmn1ZZakEKBnAD7KCdi0LYA07IStWCVHwhre_yGlKPWNs3chqRT4fcdoHS4OjEe1s0NJ3Hb3uBkzUhUjT5J0bMSVqcRe11ZMPIz3EYBYt2-bRWx_RLLoe6Obm5ZkunULKnRJNc9fnZc6dAtXDhHHMEeOOdjjaPM_JT6eHhL__zTOyvbnebu6Kh6fb-83VQ2FqaKaiXWtuXNV0Zm0d52B1XTtpBOtc69BC1bVGNJWU3IiO87prpeZC5o8FszXwM3JxjM3N32ZMk-rDnKsMSYGsGmiEhDpfyeOViSGliE4don_V8UMBUwtv1av_eKuFtwJQmXf2bo5ezF-8e4wqX-GYiX7RUTb4b6T8BVzdkio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925156914</pqid></control><display><type>article</type><title>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yamada, Yoshinori ; Iwata, Kazuki ; Kadowaki, Tomoaki ; Sumiya, Toshihiko</creator><creatorcontrib>Yamada, Yoshinori ; Iwata, Kazuki ; Kadowaki, Tomoaki ; Sumiya, Toshihiko</creatorcontrib><description>The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2016.11.011</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Activation energy ; Bend tests ; Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Damage accumulation ; Deflection ; Degradation ; Elastic properties ; Epoxy resins ; Fatigue ; Fatigue life ; Fiber composites ; Fiber reinforced polymers ; Life prediction ; Method of reduced variables ; Polymer matrix composites ; Polymer-matrix composites (PMCs) ; Polymers ; Residual strength ; Stiffness ; Studies</subject><ispartof>Composites science and technology, 2017-01, Vol.138, p.117-123</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 18, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</citedby><cites>FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2016.11.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yamada, Yoshinori</creatorcontrib><creatorcontrib>Iwata, Kazuki</creatorcontrib><creatorcontrib>Kadowaki, Tomoaki</creatorcontrib><creatorcontrib>Sumiya, Toshihiko</creatorcontrib><title>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</title><title>Composites science and technology</title><description>The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.</description><subject>Activation energy</subject><subject>Bend tests</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Damage accumulation</subject><subject>Deflection</subject><subject>Degradation</subject><subject>Elastic properties</subject><subject>Epoxy resins</subject><subject>Fatigue</subject><subject>Fatigue life</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Life prediction</subject><subject>Method of reduced variables</subject><subject>Polymer matrix composites</subject><subject>Polymer-matrix composites (PMCs)</subject><subject>Polymers</subject><subject>Residual strength</subject><subject>Stiffness</subject><subject>Studies</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O5DAQhK0VK-0A-w5ecU5wx4knPqIRfxIIhOZuOXZ7xlGIBztB4sajr8PsYY-cWqruKlV_hPwBVgIDcdmXJrwekvETmn1ZZakEKBnAD7KCdi0LYA07IStWCVHwhre_yGlKPWNs3chqRT4fcdoHS4OjEe1s0NJ3Hb3uBkzUhUjT5J0bMSVqcRe11ZMPIz3EYBYt2-bRWx_RLLoe6Obm5ZkunULKnRJNc9fnZc6dAtXDhHHMEeOOdjjaPM_JT6eHhL__zTOyvbnebu6Kh6fb-83VQ2FqaKaiXWtuXNV0Zm0d52B1XTtpBOtc69BC1bVGNJWU3IiO87prpeZC5o8FszXwM3JxjM3N32ZMk-rDnKsMSYGsGmiEhDpfyeOViSGliE4don_V8UMBUwtv1av_eKuFtwJQmXf2bo5ezF-8e4wqX-GYiX7RUTb4b6T8BVzdkio</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Yamada, Yoshinori</creator><creator>Iwata, Kazuki</creator><creator>Kadowaki, Tomoaki</creator><creator>Sumiya, Toshihiko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170118</creationdate><title>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</title><author>Yamada, Yoshinori ; Iwata, Kazuki ; Kadowaki, Tomoaki ; Sumiya, Toshihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Bend tests</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Damage accumulation</topic><topic>Deflection</topic><topic>Degradation</topic><topic>Elastic properties</topic><topic>Epoxy resins</topic><topic>Fatigue</topic><topic>Fatigue life</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Life prediction</topic><topic>Method of reduced variables</topic><topic>Polymer matrix composites</topic><topic>Polymer-matrix composites (PMCs)</topic><topic>Polymers</topic><topic>Residual strength</topic><topic>Stiffness</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Yoshinori</creatorcontrib><creatorcontrib>Iwata, Kazuki</creatorcontrib><creatorcontrib>Kadowaki, Tomoaki</creatorcontrib><creatorcontrib>Sumiya, Toshihiko</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamada, Yoshinori</au><au>Iwata, Kazuki</au><au>Kadowaki, Tomoaki</au><au>Sumiya, Toshihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</atitle><jtitle>Composites science and technology</jtitle><date>2017-01-18</date><risdate>2017</risdate><volume>138</volume><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2016.11.011</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2017-01, Vol.138, p.117-123 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_1925156914 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Activation energy Bend tests Carbon fiber reinforced plastics Carbon fiber reinforcement Damage accumulation Deflection Degradation Elastic properties Epoxy resins Fatigue Fatigue life Fiber composites Fiber reinforced polymers Life prediction Method of reduced variables Polymer matrix composites Polymer-matrix composites (PMCs) Polymers Residual strength Stiffness Studies |
title | Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20reduced%20variables%20for%20stiffness%20degradation%20process%20of%20unidirectional%20CFRP%20composites%20subjected%20to%20alternating%20bending&rft.jtitle=Composites%20science%20and%20technology&rft.au=Yamada,%20Yoshinori&rft.date=2017-01-18&rft.volume=138&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2016.11.011&rft_dat=%3Cproquest_cross%3E1925156914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925156914&rft_id=info:pmid/&rft_els_id=S0266353816305358&rfr_iscdi=true |