Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending

The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2017-01, Vol.138, p.117-123
Hauptverfasser: Yamada, Yoshinori, Iwata, Kazuki, Kadowaki, Tomoaki, Sumiya, Toshihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 117
container_title Composites science and technology
container_volume 138
creator Yamada, Yoshinori
Iwata, Kazuki
Kadowaki, Tomoaki
Sumiya, Toshihiko
description The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.
doi_str_mv 10.1016/j.compscitech.2016.11.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925156914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353816305358</els_id><sourcerecordid>1925156914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</originalsourceid><addsrcrecordid>eNqNkM1O5DAQhK0VK-0A-w5ecU5wx4knPqIRfxIIhOZuOXZ7xlGIBztB4sajr8PsYY-cWqruKlV_hPwBVgIDcdmXJrwekvETmn1ZZakEKBnAD7KCdi0LYA07IStWCVHwhre_yGlKPWNs3chqRT4fcdoHS4OjEe1s0NJ3Hb3uBkzUhUjT5J0bMSVqcRe11ZMPIz3EYBYt2-bRWx_RLLoe6Obm5ZkunULKnRJNc9fnZc6dAtXDhHHMEeOOdjjaPM_JT6eHhL__zTOyvbnebu6Kh6fb-83VQ2FqaKaiXWtuXNV0Zm0d52B1XTtpBOtc69BC1bVGNJWU3IiO87prpeZC5o8FszXwM3JxjM3N32ZMk-rDnKsMSYGsGmiEhDpfyeOViSGliE4don_V8UMBUwtv1av_eKuFtwJQmXf2bo5ezF-8e4wqX-GYiX7RUTb4b6T8BVzdkio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925156914</pqid></control><display><type>article</type><title>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yamada, Yoshinori ; Iwata, Kazuki ; Kadowaki, Tomoaki ; Sumiya, Toshihiko</creator><creatorcontrib>Yamada, Yoshinori ; Iwata, Kazuki ; Kadowaki, Tomoaki ; Sumiya, Toshihiko</creatorcontrib><description>The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2016.11.011</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Activation energy ; Bend tests ; Carbon fiber reinforced plastics ; Carbon fiber reinforcement ; Damage accumulation ; Deflection ; Degradation ; Elastic properties ; Epoxy resins ; Fatigue ; Fatigue life ; Fiber composites ; Fiber reinforced polymers ; Life prediction ; Method of reduced variables ; Polymer matrix composites ; Polymer-matrix composites (PMCs) ; Polymers ; Residual strength ; Stiffness ; Studies</subject><ispartof>Composites science and technology, 2017-01, Vol.138, p.117-123</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 18, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</citedby><cites>FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2016.11.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yamada, Yoshinori</creatorcontrib><creatorcontrib>Iwata, Kazuki</creatorcontrib><creatorcontrib>Kadowaki, Tomoaki</creatorcontrib><creatorcontrib>Sumiya, Toshihiko</creatorcontrib><title>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</title><title>Composites science and technology</title><description>The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.</description><subject>Activation energy</subject><subject>Bend tests</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforcement</subject><subject>Damage accumulation</subject><subject>Deflection</subject><subject>Degradation</subject><subject>Elastic properties</subject><subject>Epoxy resins</subject><subject>Fatigue</subject><subject>Fatigue life</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Life prediction</subject><subject>Method of reduced variables</subject><subject>Polymer matrix composites</subject><subject>Polymer-matrix composites (PMCs)</subject><subject>Polymers</subject><subject>Residual strength</subject><subject>Stiffness</subject><subject>Studies</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM1O5DAQhK0VK-0A-w5ecU5wx4knPqIRfxIIhOZuOXZ7xlGIBztB4sajr8PsYY-cWqruKlV_hPwBVgIDcdmXJrwekvETmn1ZZakEKBnAD7KCdi0LYA07IStWCVHwhre_yGlKPWNs3chqRT4fcdoHS4OjEe1s0NJ3Hb3uBkzUhUjT5J0bMSVqcRe11ZMPIz3EYBYt2-bRWx_RLLoe6Obm5ZkunULKnRJNc9fnZc6dAtXDhHHMEeOOdjjaPM_JT6eHhL__zTOyvbnebu6Kh6fb-83VQ2FqaKaiXWtuXNV0Zm0d52B1XTtpBOtc69BC1bVGNJWU3IiO87prpeZC5o8FszXwM3JxjM3N32ZMk-rDnKsMSYGsGmiEhDpfyeOViSGliE4don_V8UMBUwtv1av_eKuFtwJQmXf2bo5ezF-8e4wqX-GYiX7RUTb4b6T8BVzdkio</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Yamada, Yoshinori</creator><creator>Iwata, Kazuki</creator><creator>Kadowaki, Tomoaki</creator><creator>Sumiya, Toshihiko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170118</creationdate><title>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</title><author>Yamada, Yoshinori ; Iwata, Kazuki ; Kadowaki, Tomoaki ; Sumiya, Toshihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-87a3cf25bc7df331da44f9c60bf8fed12b8c652993c6b334b89a36935360d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Bend tests</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforcement</topic><topic>Damage accumulation</topic><topic>Deflection</topic><topic>Degradation</topic><topic>Elastic properties</topic><topic>Epoxy resins</topic><topic>Fatigue</topic><topic>Fatigue life</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Life prediction</topic><topic>Method of reduced variables</topic><topic>Polymer matrix composites</topic><topic>Polymer-matrix composites (PMCs)</topic><topic>Polymers</topic><topic>Residual strength</topic><topic>Stiffness</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Yoshinori</creatorcontrib><creatorcontrib>Iwata, Kazuki</creatorcontrib><creatorcontrib>Kadowaki, Tomoaki</creatorcontrib><creatorcontrib>Sumiya, Toshihiko</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamada, Yoshinori</au><au>Iwata, Kazuki</au><au>Kadowaki, Tomoaki</au><au>Sumiya, Toshihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending</atitle><jtitle>Composites science and technology</jtitle><date>2017-01-18</date><risdate>2017</risdate><volume>138</volume><spage>117</spage><epage>123</epage><pages>117-123</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The stiffness of carbon fiber reinforced polymer (CFRP) composites under alternating bending has been measured as a function of the number of loading cycles at various temperatures and deflection amplitudes. The stiffness of the specimens decreases gradually with an increase in the number of loading cycles. Such a stiffness degradation is closely correlated with the residual strength degradation, which suggests that the stiffness degradation process corresponds to the accumulation of microscopic damages under alternating bending. The stiffness degradation rate increases with an increase in temperature and deflection amplitude. By means of the method of reduced variables, a master curve for stiffness degradation that makes it possible to estimate the fatigue life has been composed from the stiffness degradation curves at various temperatures and loading stress levels. The activation energy and activation volume for the elementary process of the stiffness degradation are estimated to be 26 ± 3 kcal/mol and 1.1 × 10−28 m3, respectively. A molecular process for the stiffness degradation is discussed on the basis of the thermally activated process theory.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2016.11.011</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2017-01, Vol.138, p.117-123
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_1925156914
source Elsevier ScienceDirect Journals Complete
subjects Activation energy
Bend tests
Carbon fiber reinforced plastics
Carbon fiber reinforcement
Damage accumulation
Deflection
Degradation
Elastic properties
Epoxy resins
Fatigue
Fatigue life
Fiber composites
Fiber reinforced polymers
Life prediction
Method of reduced variables
Polymer matrix composites
Polymer-matrix composites (PMCs)
Polymers
Residual strength
Stiffness
Studies
title Method of reduced variables for stiffness degradation process of unidirectional CFRP composites subjected to alternating bending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20reduced%20variables%20for%20stiffness%20degradation%20process%20of%20unidirectional%20CFRP%20composites%20subjected%20to%20alternating%20bending&rft.jtitle=Composites%20science%20and%20technology&rft.au=Yamada,%20Yoshinori&rft.date=2017-01-18&rft.volume=138&rft.spage=117&rft.epage=123&rft.pages=117-123&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2016.11.011&rft_dat=%3Cproquest_cross%3E1925156914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925156914&rft_id=info:pmid/&rft_els_id=S0266353816305358&rfr_iscdi=true