Revisiting Hydrometeorology Using Cloud and Climate Observations

This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2017-04, Vol.18 (4), p.939-955
Hauptverfasser: Betts, Alan K., Tawfik, Ahmed B., Desjardins, Raymond L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 4
container_start_page 939
container_title Journal of hydrometeorology
container_volume 18
creator Betts, Alan K.
Tawfik, Ahmed B.
Desjardins, Raymond L.
description This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.
doi_str_mv 10.1175/JHM-D-16-0203.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1924859143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26152621</jstor_id><sourcerecordid>26152621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnT8KC57SZfO3uTWnVKpWCWPAWdpNs2dJuapIt9L83pdLTPIbfmzc8hO6BjAByMf6YfeIpBokJJWwEF2gAggqcCw6XZy1-rtFNCGtCCC-hGKCnL7tvQxvbbpXNDsa7rY3Webdxq0O2DMf1ZON6k1WdSardVtFmizpYv69i67pwi66aahPs3f8couXry_dkhueLt_fJ8xxrWkLEIuURLbUwOTSirjQFKSQQUzBCNK9LLRtaF8yIprY6B8urMkFMFKw2pOBsiB5Pd3fe_fY2RLV2ve9SpIKS8kKUwFmixidKexeCt43a-fSzPygg6liTSjWpqQKpjjUpSI6Hk2MdovNnnMrUmKTA_gCCz2Q2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924859143</pqid></control><display><type>article</type><title>Revisiting Hydrometeorology Using Cloud and Climate Observations</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Betts, Alan K. ; Tawfik, Ahmed B. ; Desjardins, Raymond L.</creator><creatorcontrib>Betts, Alan K. ; Tawfik, Ahmed B. ; Desjardins, Raymond L.</creatorcontrib><description>This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-16-0203.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Agriculture ; Anomalies ; Atmosphere ; Atmospheric models ; Climate change ; Climate models ; Climatic data ; Cloud cover ; Cloud-climate relationships ; Clouds ; Coefficients ; Condensation ; Convection ; Correlation coefficient ; Correlation coefficients ; Coupling ; Cycle ratio ; Daily temperature range ; Daily temperatures ; Data processing ; Datasets ; Diurnal cycle ; Diurnal variations ; Drought ; Drought conditions ; Equivalent potential temperature ; Gravity ; Humidity ; Hydrometeorology ; Lifting condensation level ; Mean temperatures ; Mixing ratio ; Moisture content ; Monthly precipitation ; Potential temperature ; Prairies ; Precipitation ; Precipitation anomalies ; Radiation ; Rain ; Regression analysis ; Regression coefficients ; Relative humidity ; Satellite observation ; Satellites ; Seasons ; Snowmelt ; Snowpack ; Soil ; Soil water ; Summer ; Summer climates ; Temperature ; Temperature effects ; Uptake ; Warm seasons ; Weather forecasting</subject><ispartof>Journal of hydrometeorology, 2017-04, Vol.18 (4), p.939-955</ispartof><rights>2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</citedby><cites>FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26152621$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26152621$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Betts, Alan K.</creatorcontrib><creatorcontrib>Tawfik, Ahmed B.</creatorcontrib><creatorcontrib>Desjardins, Raymond L.</creatorcontrib><title>Revisiting Hydrometeorology Using Cloud and Climate Observations</title><title>Journal of hydrometeorology</title><description>This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.</description><subject>Agriculture</subject><subject>Anomalies</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic data</subject><subject>Cloud cover</subject><subject>Cloud-climate relationships</subject><subject>Clouds</subject><subject>Coefficients</subject><subject>Condensation</subject><subject>Convection</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Coupling</subject><subject>Cycle ratio</subject><subject>Daily temperature range</subject><subject>Daily temperatures</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Diurnal cycle</subject><subject>Diurnal variations</subject><subject>Drought</subject><subject>Drought conditions</subject><subject>Equivalent potential temperature</subject><subject>Gravity</subject><subject>Humidity</subject><subject>Hydrometeorology</subject><subject>Lifting condensation level</subject><subject>Mean temperatures</subject><subject>Mixing ratio</subject><subject>Moisture content</subject><subject>Monthly precipitation</subject><subject>Potential temperature</subject><subject>Prairies</subject><subject>Precipitation</subject><subject>Precipitation anomalies</subject><subject>Radiation</subject><subject>Rain</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Relative humidity</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Seasons</subject><subject>Snowmelt</subject><subject>Snowpack</subject><subject>Soil</subject><subject>Soil water</subject><subject>Summer</subject><subject>Summer climates</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Uptake</subject><subject>Warm seasons</subject><subject>Weather forecasting</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kM1LAzEQxYMoWKtnT8KC57SZfO3uTWnVKpWCWPAWdpNs2dJuapIt9L83pdLTPIbfmzc8hO6BjAByMf6YfeIpBokJJWwEF2gAggqcCw6XZy1-rtFNCGtCCC-hGKCnL7tvQxvbbpXNDsa7rY3Webdxq0O2DMf1ZON6k1WdSardVtFmizpYv69i67pwi66aahPs3f8couXry_dkhueLt_fJ8xxrWkLEIuURLbUwOTSirjQFKSQQUzBCNK9LLRtaF8yIprY6B8urMkFMFKw2pOBsiB5Pd3fe_fY2RLV2ve9SpIKS8kKUwFmixidKexeCt43a-fSzPygg6liTSjWpqQKpjjUpSI6Hk2MdovNnnMrUmKTA_gCCz2Q2</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Betts, Alan K.</creator><creator>Tawfik, Ahmed B.</creator><creator>Desjardins, Raymond L.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170401</creationdate><title>Revisiting Hydrometeorology Using Cloud and Climate Observations</title><author>Betts, Alan K. ; Tawfik, Ahmed B. ; Desjardins, Raymond L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Anomalies</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic data</topic><topic>Cloud cover</topic><topic>Cloud-climate relationships</topic><topic>Clouds</topic><topic>Coefficients</topic><topic>Condensation</topic><topic>Convection</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Coupling</topic><topic>Cycle ratio</topic><topic>Daily temperature range</topic><topic>Daily temperatures</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Diurnal cycle</topic><topic>Diurnal variations</topic><topic>Drought</topic><topic>Drought conditions</topic><topic>Equivalent potential temperature</topic><topic>Gravity</topic><topic>Humidity</topic><topic>Hydrometeorology</topic><topic>Lifting condensation level</topic><topic>Mean temperatures</topic><topic>Mixing ratio</topic><topic>Moisture content</topic><topic>Monthly precipitation</topic><topic>Potential temperature</topic><topic>Prairies</topic><topic>Precipitation</topic><topic>Precipitation anomalies</topic><topic>Radiation</topic><topic>Rain</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Relative humidity</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Seasons</topic><topic>Snowmelt</topic><topic>Snowpack</topic><topic>Soil</topic><topic>Soil water</topic><topic>Summer</topic><topic>Summer climates</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Uptake</topic><topic>Warm seasons</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betts, Alan K.</creatorcontrib><creatorcontrib>Tawfik, Ahmed B.</creatorcontrib><creatorcontrib>Desjardins, Raymond L.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betts, Alan K.</au><au>Tawfik, Ahmed B.</au><au>Desjardins, Raymond L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Hydrometeorology Using Cloud and Climate Observations</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>18</volume><issue>4</issue><spage>939</spage><epage>955</epage><pages>939-955</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-16-0203.1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2017-04, Vol.18 (4), p.939-955
issn 1525-755X
1525-7541
language eng
recordid cdi_proquest_journals_1924859143
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; JSTOR
subjects Agriculture
Anomalies
Atmosphere
Atmospheric models
Climate change
Climate models
Climatic data
Cloud cover
Cloud-climate relationships
Clouds
Coefficients
Condensation
Convection
Correlation coefficient
Correlation coefficients
Coupling
Cycle ratio
Daily temperature range
Daily temperatures
Data processing
Datasets
Diurnal cycle
Diurnal variations
Drought
Drought conditions
Equivalent potential temperature
Gravity
Humidity
Hydrometeorology
Lifting condensation level
Mean temperatures
Mixing ratio
Moisture content
Monthly precipitation
Potential temperature
Prairies
Precipitation
Precipitation anomalies
Radiation
Rain
Regression analysis
Regression coefficients
Relative humidity
Satellite observation
Satellites
Seasons
Snowmelt
Snowpack
Soil
Soil water
Summer
Summer climates
Temperature
Temperature effects
Uptake
Warm seasons
Weather forecasting
title Revisiting Hydrometeorology Using Cloud and Climate Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Hydrometeorology%20Using%20Cloud%20and%20Climate%20Observations&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Betts,%20Alan%20K.&rft.date=2017-04-01&rft.volume=18&rft.issue=4&rft.spage=939&rft.epage=955&rft.pages=939-955&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-16-0203.1&rft_dat=%3Cjstor_proqu%3E26152621%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924859143&rft_id=info:pmid/&rft_jstor_id=26152621&rfr_iscdi=true