Revisiting Hydrometeorology Using Cloud and Climate Observations
This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for a...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2017-04, Vol.18 (4), p.939-955 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 955 |
---|---|
container_issue | 4 |
container_start_page | 939 |
container_title | Journal of hydrometeorology |
container_volume | 18 |
creator | Betts, Alan K. Tawfik, Ahmed B. Desjardins, Raymond L. |
description | This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models. |
doi_str_mv | 10.1175/JHM-D-16-0203.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1924859143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26152621</jstor_id><sourcerecordid>26152621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKtnT8KC57SZfO3uTWnVKpWCWPAWdpNs2dJuapIt9L83pdLTPIbfmzc8hO6BjAByMf6YfeIpBokJJWwEF2gAggqcCw6XZy1-rtFNCGtCCC-hGKCnL7tvQxvbbpXNDsa7rY3Webdxq0O2DMf1ZON6k1WdSardVtFmizpYv69i67pwi66aahPs3f8couXry_dkhueLt_fJ8xxrWkLEIuURLbUwOTSirjQFKSQQUzBCNK9LLRtaF8yIprY6B8urMkFMFKw2pOBsiB5Pd3fe_fY2RLV2ve9SpIKS8kKUwFmixidKexeCt43a-fSzPygg6liTSjWpqQKpjjUpSI6Hk2MdovNnnMrUmKTA_gCCz2Q2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924859143</pqid></control><display><type>article</type><title>Revisiting Hydrometeorology Using Cloud and Climate Observations</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Betts, Alan K. ; Tawfik, Ahmed B. ; Desjardins, Raymond L.</creator><creatorcontrib>Betts, Alan K. ; Tawfik, Ahmed B. ; Desjardins, Raymond L.</creatorcontrib><description>This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-16-0203.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Agriculture ; Anomalies ; Atmosphere ; Atmospheric models ; Climate change ; Climate models ; Climatic data ; Cloud cover ; Cloud-climate relationships ; Clouds ; Coefficients ; Condensation ; Convection ; Correlation coefficient ; Correlation coefficients ; Coupling ; Cycle ratio ; Daily temperature range ; Daily temperatures ; Data processing ; Datasets ; Diurnal cycle ; Diurnal variations ; Drought ; Drought conditions ; Equivalent potential temperature ; Gravity ; Humidity ; Hydrometeorology ; Lifting condensation level ; Mean temperatures ; Mixing ratio ; Moisture content ; Monthly precipitation ; Potential temperature ; Prairies ; Precipitation ; Precipitation anomalies ; Radiation ; Rain ; Regression analysis ; Regression coefficients ; Relative humidity ; Satellite observation ; Satellites ; Seasons ; Snowmelt ; Snowpack ; Soil ; Soil water ; Summer ; Summer climates ; Temperature ; Temperature effects ; Uptake ; Warm seasons ; Weather forecasting</subject><ispartof>Journal of hydrometeorology, 2017-04, Vol.18 (4), p.939-955</ispartof><rights>2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</citedby><cites>FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26152621$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26152621$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Betts, Alan K.</creatorcontrib><creatorcontrib>Tawfik, Ahmed B.</creatorcontrib><creatorcontrib>Desjardins, Raymond L.</creatorcontrib><title>Revisiting Hydrometeorology Using Cloud and Climate Observations</title><title>Journal of hydrometeorology</title><description>This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.</description><subject>Agriculture</subject><subject>Anomalies</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic data</subject><subject>Cloud cover</subject><subject>Cloud-climate relationships</subject><subject>Clouds</subject><subject>Coefficients</subject><subject>Condensation</subject><subject>Convection</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Coupling</subject><subject>Cycle ratio</subject><subject>Daily temperature range</subject><subject>Daily temperatures</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Diurnal cycle</subject><subject>Diurnal variations</subject><subject>Drought</subject><subject>Drought conditions</subject><subject>Equivalent potential temperature</subject><subject>Gravity</subject><subject>Humidity</subject><subject>Hydrometeorology</subject><subject>Lifting condensation level</subject><subject>Mean temperatures</subject><subject>Mixing ratio</subject><subject>Moisture content</subject><subject>Monthly precipitation</subject><subject>Potential temperature</subject><subject>Prairies</subject><subject>Precipitation</subject><subject>Precipitation anomalies</subject><subject>Radiation</subject><subject>Rain</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Relative humidity</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Seasons</subject><subject>Snowmelt</subject><subject>Snowpack</subject><subject>Soil</subject><subject>Soil water</subject><subject>Summer</subject><subject>Summer climates</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Uptake</subject><subject>Warm seasons</subject><subject>Weather forecasting</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kM1LAzEQxYMoWKtnT8KC57SZfO3uTWnVKpWCWPAWdpNs2dJuapIt9L83pdLTPIbfmzc8hO6BjAByMf6YfeIpBokJJWwEF2gAggqcCw6XZy1-rtFNCGtCCC-hGKCnL7tvQxvbbpXNDsa7rY3Webdxq0O2DMf1ZON6k1WdSardVtFmizpYv69i67pwi66aahPs3f8couXry_dkhueLt_fJ8xxrWkLEIuURLbUwOTSirjQFKSQQUzBCNK9LLRtaF8yIprY6B8urMkFMFKw2pOBsiB5Pd3fe_fY2RLV2ve9SpIKS8kKUwFmixidKexeCt43a-fSzPygg6liTSjWpqQKpjjUpSI6Hk2MdovNnnMrUmKTA_gCCz2Q2</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Betts, Alan K.</creator><creator>Tawfik, Ahmed B.</creator><creator>Desjardins, Raymond L.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170401</creationdate><title>Revisiting Hydrometeorology Using Cloud and Climate Observations</title><author>Betts, Alan K. ; Tawfik, Ahmed B. ; Desjardins, Raymond L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-50490c6c5d71f5bac2165610d8300c4b9c6f2b83d5fbec71e4a9ac23583bd0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Anomalies</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic data</topic><topic>Cloud cover</topic><topic>Cloud-climate relationships</topic><topic>Clouds</topic><topic>Coefficients</topic><topic>Condensation</topic><topic>Convection</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Coupling</topic><topic>Cycle ratio</topic><topic>Daily temperature range</topic><topic>Daily temperatures</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Diurnal cycle</topic><topic>Diurnal variations</topic><topic>Drought</topic><topic>Drought conditions</topic><topic>Equivalent potential temperature</topic><topic>Gravity</topic><topic>Humidity</topic><topic>Hydrometeorology</topic><topic>Lifting condensation level</topic><topic>Mean temperatures</topic><topic>Mixing ratio</topic><topic>Moisture content</topic><topic>Monthly precipitation</topic><topic>Potential temperature</topic><topic>Prairies</topic><topic>Precipitation</topic><topic>Precipitation anomalies</topic><topic>Radiation</topic><topic>Rain</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Relative humidity</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Seasons</topic><topic>Snowmelt</topic><topic>Snowpack</topic><topic>Soil</topic><topic>Soil water</topic><topic>Summer</topic><topic>Summer climates</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Uptake</topic><topic>Warm seasons</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betts, Alan K.</creatorcontrib><creatorcontrib>Tawfik, Ahmed B.</creatorcontrib><creatorcontrib>Desjardins, Raymond L.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betts, Alan K.</au><au>Tawfik, Ahmed B.</au><au>Desjardins, Raymond L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting Hydrometeorology Using Cloud and Climate Observations</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>18</volume><issue>4</issue><spage>939</spage><epage>955</epage><pages>939-955</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climatewith opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud–climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land–cloud–atmosphere system in both forecast and climate models.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-16-0203.1</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2017-04, Vol.18 (4), p.939-955 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_proquest_journals_1924859143 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; JSTOR |
subjects | Agriculture Anomalies Atmosphere Atmospheric models Climate change Climate models Climatic data Cloud cover Cloud-climate relationships Clouds Coefficients Condensation Convection Correlation coefficient Correlation coefficients Coupling Cycle ratio Daily temperature range Daily temperatures Data processing Datasets Diurnal cycle Diurnal variations Drought Drought conditions Equivalent potential temperature Gravity Humidity Hydrometeorology Lifting condensation level Mean temperatures Mixing ratio Moisture content Monthly precipitation Potential temperature Prairies Precipitation Precipitation anomalies Radiation Rain Regression analysis Regression coefficients Relative humidity Satellite observation Satellites Seasons Snowmelt Snowpack Soil Soil water Summer Summer climates Temperature Temperature effects Uptake Warm seasons Weather forecasting |
title | Revisiting Hydrometeorology Using Cloud and Climate Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A08%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20Hydrometeorology%20Using%20Cloud%20and%20Climate%20Observations&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Betts,%20Alan%20K.&rft.date=2017-04-01&rft.volume=18&rft.issue=4&rft.spage=939&rft.epage=955&rft.pages=939-955&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-16-0203.1&rft_dat=%3Cjstor_proqu%3E26152621%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924859143&rft_id=info:pmid/&rft_jstor_id=26152621&rfr_iscdi=true |