On approximate solution of the Dixon integral equation and some its generalizations
The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equat...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2017-07, Vol.57 (7), p.1158-1166 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1166 |
---|---|
container_issue | 7 |
container_start_page | 1158 |
container_title | Computational mathematics and mathematical physics |
container_volume | 57 |
creator | Barseghyan, A. G. |
description | The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented. |
doi_str_mv | 10.1134/S0965542517070041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1924798946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924798946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ec5f4654d04ed6e6dd4d3e90412b21f9681ea9d08e767cecb3beda113d0cb8bc3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82qSTbKbo9S_UOihel6yyey6ZZttkyxUP71p60EQT8Pwe2_mzSB0TcktpTm_WxIlheBM0IIUhHB6giZUCJFJKdkpmuxxtufn6CKEFSFUqjKfoOXCYb3Z-GHXrXUEHIZ-jN3g8NDg-AH4odulpnMRWq97DNtRH7B2NmnXgLsYcAsOEu2-DixcorNG9wGufuoUvT89vs1esvni-XV2P88Mk2XMwIiGS8Et4WAlSGu5zUGl7KxmtFGypKCVJSUUsjBg6rwGq9O1lpi6rE0-RTfHuSn-doQQq9UwepdWVlQxXqhScZlU9KgyfgjBQ1NtfLrVf1aUVPvfVX9-lzzs6AlJ61rwvyb_a_oGoh1x7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924798946</pqid></control><display><type>article</type><title>On approximate solution of the Dixon integral equation and some its generalizations</title><source>SpringerLink_现刊</source><creator>Barseghyan, A. G.</creator><creatorcontrib>Barseghyan, A. G.</creatorcontrib><description>The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517070041</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Fredholm equations ; Integral equations ; Kernels ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Wiener Hopf equations</subject><ispartof>Computational mathematics and mathematical physics, 2017-07, Vol.57 (7), p.1158-1166</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ec5f4654d04ed6e6dd4d3e90412b21f9681ea9d08e767cecb3beda113d0cb8bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542517070041$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542517070041$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barseghyan, A. G.</creatorcontrib><title>On approximate solution of the Dixon integral equation and some its generalizations</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fredholm equations</subject><subject>Integral equations</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Wiener Hopf equations</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82qSTbKbo9S_UOihel6yyey6ZZttkyxUP71p60EQT8Pwe2_mzSB0TcktpTm_WxIlheBM0IIUhHB6giZUCJFJKdkpmuxxtufn6CKEFSFUqjKfoOXCYb3Z-GHXrXUEHIZ-jN3g8NDg-AH4odulpnMRWq97DNtRH7B2NmnXgLsYcAsOEu2-DixcorNG9wGufuoUvT89vs1esvni-XV2P88Mk2XMwIiGS8Et4WAlSGu5zUGl7KxmtFGypKCVJSUUsjBg6rwGq9O1lpi6rE0-RTfHuSn-doQQq9UwepdWVlQxXqhScZlU9KgyfgjBQ1NtfLrVf1aUVPvfVX9-lzzs6AlJ61rwvyb_a_oGoh1x7g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Barseghyan, A. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>On approximate solution of the Dixon integral equation and some its generalizations</title><author>Barseghyan, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ec5f4654d04ed6e6dd4d3e90412b21f9681ea9d08e767cecb3beda113d0cb8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fredholm equations</topic><topic>Integral equations</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Wiener Hopf equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barseghyan, A. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barseghyan, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On approximate solution of the Dixon integral equation and some its generalizations</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>57</volume><issue>7</issue><spage>1158</spage><epage>1166</epage><pages>1158-1166</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517070041</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2017-07, Vol.57 (7), p.1158-1166 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_1924798946 |
source | SpringerLink_现刊 |
subjects | Computational Mathematics and Numerical Analysis Fredholm equations Integral equations Kernels Mathematical analysis Mathematics Mathematics and Statistics Wiener Hopf equations |
title | On approximate solution of the Dixon integral equation and some its generalizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20approximate%20solution%20of%20the%20Dixon%20integral%20equation%20and%20some%20its%20generalizations&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Barseghyan,%20A.%20G.&rft.date=2017-07-01&rft.volume=57&rft.issue=7&rft.spage=1158&rft.epage=1166&rft.pages=1158-1166&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517070041&rft_dat=%3Cproquest_cross%3E1924798946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924798946&rft_id=info:pmid/&rfr_iscdi=true |