On approximate solution of the Dixon integral equation and some its generalizations

The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2017-07, Vol.57 (7), p.1158-1166
1. Verfasser: Barseghyan, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1166
container_issue 7
container_start_page 1158
container_title Computational mathematics and mathematical physics
container_volume 57
creator Barseghyan, A. G.
description The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.
doi_str_mv 10.1134/S0965542517070041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1924798946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924798946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-ec5f4654d04ed6e6dd4d3e90412b21f9681ea9d08e767cecb3beda113d0cb8bc3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82qSTbKbo9S_UOihel6yyey6ZZttkyxUP71p60EQT8Pwe2_mzSB0TcktpTm_WxIlheBM0IIUhHB6giZUCJFJKdkpmuxxtufn6CKEFSFUqjKfoOXCYb3Z-GHXrXUEHIZ-jN3g8NDg-AH4odulpnMRWq97DNtRH7B2NmnXgLsYcAsOEu2-DixcorNG9wGufuoUvT89vs1esvni-XV2P88Mk2XMwIiGS8Et4WAlSGu5zUGl7KxmtFGypKCVJSUUsjBg6rwGq9O1lpi6rE0-RTfHuSn-doQQq9UwepdWVlQxXqhScZlU9KgyfgjBQ1NtfLrVf1aUVPvfVX9-lzzs6AlJ61rwvyb_a_oGoh1x7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924798946</pqid></control><display><type>article</type><title>On approximate solution of the Dixon integral equation and some its generalizations</title><source>SpringerLink_现刊</source><creator>Barseghyan, A. G.</creator><creatorcontrib>Barseghyan, A. G.</creatorcontrib><description>The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517070041</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Fredholm equations ; Integral equations ; Kernels ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Wiener Hopf equations</subject><ispartof>Computational mathematics and mathematical physics, 2017-07, Vol.57 (7), p.1158-1166</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-ec5f4654d04ed6e6dd4d3e90412b21f9681ea9d08e767cecb3beda113d0cb8bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542517070041$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542517070041$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barseghyan, A. G.</creatorcontrib><title>On approximate solution of the Dixon integral equation and some its generalizations</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Fredholm equations</subject><subject>Integral equations</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Wiener Hopf equations</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82qSTbKbo9S_UOihel6yyey6ZZttkyxUP71p60EQT8Pwe2_mzSB0TcktpTm_WxIlheBM0IIUhHB6giZUCJFJKdkpmuxxtufn6CKEFSFUqjKfoOXCYb3Z-GHXrXUEHIZ-jN3g8NDg-AH4odulpnMRWq97DNtRH7B2NmnXgLsYcAsOEu2-DixcorNG9wGufuoUvT89vs1esvni-XV2P88Mk2XMwIiGS8Et4WAlSGu5zUGl7KxmtFGypKCVJSUUsjBg6rwGq9O1lpi6rE0-RTfHuSn-doQQq9UwepdWVlQxXqhScZlU9KgyfgjBQ1NtfLrVf1aUVPvfVX9-lzzs6AlJ61rwvyb_a_oGoh1x7g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Barseghyan, A. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>On approximate solution of the Dixon integral equation and some its generalizations</title><author>Barseghyan, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-ec5f4654d04ed6e6dd4d3e90412b21f9681ea9d08e767cecb3beda113d0cb8bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Fredholm equations</topic><topic>Integral equations</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Wiener Hopf equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barseghyan, A. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barseghyan, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On approximate solution of the Dixon integral equation and some its generalizations</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>57</volume><issue>7</issue><spage>1158</spage><epage>1166</epage><pages>1158-1166</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The paper is devoted to the study and numerical analytical solution of Fredholm-type integral equations of the second kind with symmetric kernels represented by homogeneous functions of degree (-1). The well-known Dixon equation and some its direct generalizations are specially considered. The equations are solved by passing to a Wiener–Hopf equation and applying the kernel averaging method. Results of numerical calculations are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517070041</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2017-07, Vol.57 (7), p.1158-1166
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_1924798946
source SpringerLink_现刊
subjects Computational Mathematics and Numerical Analysis
Fredholm equations
Integral equations
Kernels
Mathematical analysis
Mathematics
Mathematics and Statistics
Wiener Hopf equations
title On approximate solution of the Dixon integral equation and some its generalizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20approximate%20solution%20of%20the%20Dixon%20integral%20equation%20and%20some%20its%20generalizations&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Barseghyan,%20A.%20G.&rft.date=2017-07-01&rft.volume=57&rft.issue=7&rft.spage=1158&rft.epage=1166&rft.pages=1158-1166&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517070041&rft_dat=%3Cproquest_cross%3E1924798946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924798946&rft_id=info:pmid/&rfr_iscdi=true