Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?

Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2017-02, Vol.74 (2), p.487-511
Hauptverfasser: Goss, Michael, Feldstein, Steven B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 2
container_start_page 487
container_title Journal of the atmospheric sciences
container_volume 74
creator Goss, Michael
Feldstein, Steven B.
description Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.
doi_str_mv 10.1175/JAS-D-16-0067.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1924790945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924790945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-2f81290e787065ac8f5c94ba9bac5e27e1a07b7c9e0d850ff630751026a03b623</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKtrtwHXaV8yk2SyktLWL4QKrYirkKYZTZlOxkwq9t87bcW3uYt7OQ8OQtcUBpRKPnwazcmEUEEAhBzQE9SjnAGBXKhT1ANgjOSKFefoom3X0B2TtIfWb587PAl47je-MhG_mJRcrFscSryIofHWVHgc6m9nkw81fveuWuHpT4om_dc-2m1lDv2oDhtTeXcAzJomtD65jv5R316is9JUrbv6yz56vZsuxg_keXb_OB49E5tRSISVBWUKnCwkCG5sUXKr8qVRS2O5Y9JRA3IprXKwKjiUpchAcgpMGMiWgmV9dHPkNjF8bV2b9DpsY9291FSxXCpQOe9Ww-PKxtC20ZW6iX5j4k5T0HuhuhOqJ5oKvReqafYLXdtpDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924790945</pqid></control><display><type>article</type><title>Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Goss, Michael ; Feldstein, Steven B.</creator><creatorcontrib>Goss, Michael ; Feldstein, Steven B.</creatorcontrib><description>Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-16-0067.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anomalies ; Atmospheric precipitations ; Circulation ; Climate ; Climate models ; Climatology ; Convection ; Convection modes ; Cyclones ; Dynamic height ; El Nino ; El Nino phenomena ; Equator ; Geopotential ; Geopotential height ; Heating ; Height anomalies ; La Nina ; Madden-Julian oscillation ; Observational studies ; Oceans ; Precipitation ; Precipitation anomalies ; Studies ; Tropical climate ; Tropical convection ; Weather forecasting ; Yields</subject><ispartof>Journal of the atmospheric sciences, 2017-02, Vol.74 (2), p.487-511</ispartof><rights>Copyright American Meteorological Society Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-2f81290e787065ac8f5c94ba9bac5e27e1a07b7c9e0d850ff630751026a03b623</citedby><cites>FETCH-LOGICAL-c310t-2f81290e787065ac8f5c94ba9bac5e27e1a07b7c9e0d850ff630751026a03b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Goss, Michael</creatorcontrib><creatorcontrib>Feldstein, Steven B.</creatorcontrib><title>Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?</title><title>Journal of the atmospheric sciences</title><description>Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.</description><subject>Anomalies</subject><subject>Atmospheric precipitations</subject><subject>Circulation</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Convection</subject><subject>Convection modes</subject><subject>Cyclones</subject><subject>Dynamic height</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Equator</subject><subject>Geopotential</subject><subject>Geopotential height</subject><subject>Heating</subject><subject>Height anomalies</subject><subject>La Nina</subject><subject>Madden-Julian oscillation</subject><subject>Observational studies</subject><subject>Oceans</subject><subject>Precipitation</subject><subject>Precipitation anomalies</subject><subject>Studies</subject><subject>Tropical climate</subject><subject>Tropical convection</subject><subject>Weather forecasting</subject><subject>Yields</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEURYMoWKtrtwHXaV8yk2SyktLWL4QKrYirkKYZTZlOxkwq9t87bcW3uYt7OQ8OQtcUBpRKPnwazcmEUEEAhBzQE9SjnAGBXKhT1ANgjOSKFefoom3X0B2TtIfWb587PAl47je-MhG_mJRcrFscSryIofHWVHgc6m9nkw81fveuWuHpT4om_dc-2m1lDv2oDhtTeXcAzJomtD65jv5R316is9JUrbv6yz56vZsuxg_keXb_OB49E5tRSISVBWUKnCwkCG5sUXKr8qVRS2O5Y9JRA3IprXKwKjiUpchAcgpMGMiWgmV9dHPkNjF8bV2b9DpsY9291FSxXCpQOe9Ww-PKxtC20ZW6iX5j4k5T0HuhuhOqJ5oKvReqafYLXdtpDg</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Goss, Michael</creator><creator>Feldstein, Steven B.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20170201</creationdate><title>Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?</title><author>Goss, Michael ; Feldstein, Steven B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-2f81290e787065ac8f5c94ba9bac5e27e1a07b7c9e0d850ff630751026a03b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Atmospheric precipitations</topic><topic>Circulation</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Convection</topic><topic>Convection modes</topic><topic>Cyclones</topic><topic>Dynamic height</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Equator</topic><topic>Geopotential</topic><topic>Geopotential height</topic><topic>Heating</topic><topic>Height anomalies</topic><topic>La Nina</topic><topic>Madden-Julian oscillation</topic><topic>Observational studies</topic><topic>Oceans</topic><topic>Precipitation</topic><topic>Precipitation anomalies</topic><topic>Studies</topic><topic>Tropical climate</topic><topic>Tropical convection</topic><topic>Weather forecasting</topic><topic>Yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goss, Michael</creatorcontrib><creatorcontrib>Feldstein, Steven B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goss, Michael</au><au>Feldstein, Steven B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>74</volume><issue>2</issue><spage>487</spage><epage>511</epage><pages>487-511</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Tropical precipitation anomalies associated with El Niño and Madden–Julian oscillation (MJO) phase 1 (La Niña and MJO phase 5) are characterized by a tripole, with positive (negative) centers over the Indian Ocean and central Pacific and a negative (positive) center over the warm pool region. However, their midlatitude circulation responses over the North Pacific and North America tend to be of opposite sign. To investigate these differences in the extratropical response to tropical convection, the dynamical core of a climate model is used, with boreal winter climatology as the initial flow. The model is run using the full heating field for the above four cases, and with heating restricted to each of seven small domains located near or over the equator, to investigate which convective anomalies may be responsible for the different extratropical responses. An analogous observational study is also performed. For both studies, it is found that, despite having a similar tropical convective anomaly spatial pattern, the extratropical response to El Niño and MJO phase 1 (La Niña and MJO phase 5) is quite different. Most notably, responses with opposite-signed upper-tropospheric geopotential height anomalies are found over the eastern North Pacific, northwestern North America, and the southeastern United States. The extratropical response for each convective case most closely resembles that for the domain associated with the largest-amplitude precipitation anomaly: the central equatorial Pacific for El Niño and La Niña and the warm pool region for MJO phases 1 and 5.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-16-0067.1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2017-02, Vol.74 (2), p.487-511
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_1924790945
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Anomalies
Atmospheric precipitations
Circulation
Climate
Climate models
Climatology
Convection
Convection modes
Cyclones
Dynamic height
El Nino
El Nino phenomena
Equator
Geopotential
Geopotential height
Heating
Height anomalies
La Nina
Madden-Julian oscillation
Observational studies
Oceans
Precipitation
Precipitation anomalies
Studies
Tropical climate
Tropical convection
Weather forecasting
Yields
title Why Do Similar Patterns of Tropical Convection Yield Extratropical Circulation Anomalies of Opposite Sign?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Do%20Similar%20Patterns%20of%20Tropical%20Convection%20Yield%20Extratropical%20Circulation%20Anomalies%20of%20Opposite%20Sign?&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Goss,%20Michael&rft.date=2017-02-01&rft.volume=74&rft.issue=2&rft.spage=487&rft.epage=511&rft.pages=487-511&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-16-0067.1&rft_dat=%3Cproquest_cross%3E1924790945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924790945&rft_id=info:pmid/&rfr_iscdi=true