THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT
The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2017-04, Vol.98 (4), p.767-786 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 4 |
container_start_page | 767 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 98 |
creator | Geerts, Bart Parsons, David Ziegler, Conrad L. Weckwerth, Tammy M. Biggerstaff, Michael I. Clark, Richard D. Coniglio, Michael C. Demoz, Belay B. Ferrare, Richard A. Gallus, William A. Haghi, Kevin Hanesiak, John M. Klein, Petra M. Knupp, Kevin R. Kosiba, Karen McFarquhar, Greg M. Moore, James A. Nehrir, Amin R. Parker, Matthew D. Pinto, James O. Rauber, Robert M. Schumacher, Russ S. Turner, David D. Wang, Qing Wang, Xuguang Wang, Zhien Wurman, Joshua |
description | The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings. |
doi_str_mv | 10.1175/bams-d-15-00257.1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1924680711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A492464832</galeid><jstor_id>26243717</jstor_id><sourcerecordid>A492464832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</originalsourceid><addsrcrecordid>eNptkVFr2zAQx8XYYFm3D7CHgmFPe3Cqk3SWvTcvcRsXLymN11ehKnJwSOJWcqD99lWa0hIIehD63-93hzhCfgIdAki8uNcbHy9iwJhShnIIn8gAkNGYCik_kwGllIcSlV_JN-9X-ydPYUD-1JMiYhQwuqnycjqPiqq4y-tiHI1m07tiVJezaZTX0bS8mtTRZVlU4-jmdnYdKt_Jl0avvf3xdp-R_5dFPZrE1eyqHOVVbFDwPr5nGdNGC2kQU4QsoZihTRpAQJ5kNNVyYa1mIJAvdAgkoGlEY1OBaWM0PyO_Dn0fXPe4s75Xq27ntmGkgoyJJA0GfFBLvbaq3TZd77TZtN6oXOwxkXIWqPgEtbRb6_S629qmDfERPzzBh7Owm9acFH4fCYHp7VO_1DvvVTm_PWbhwBrXee9sox5cu9HuWQFV-62qv_m_uRorQPW6VbX_5vnBWfm-c-8CS5jgEiR_ATHulEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924680711</pqid></control><display><type>article</type><title>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</title><source>American Meteorological Society</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Geerts, Bart ; Parsons, David ; Ziegler, Conrad L. ; Weckwerth, Tammy M. ; Biggerstaff, Michael I. ; Clark, Richard D. ; Coniglio, Michael C. ; Demoz, Belay B. ; Ferrare, Richard A. ; Gallus, William A. ; Haghi, Kevin ; Hanesiak, John M. ; Klein, Petra M. ; Knupp, Kevin R. ; Kosiba, Karen ; McFarquhar, Greg M. ; Moore, James A. ; Nehrir, Amin R. ; Parker, Matthew D. ; Pinto, James O. ; Rauber, Robert M. ; Schumacher, Russ S. ; Turner, David D. ; Wang, Qing ; Wang, Xuguang ; Wang, Zhien ; Wurman, Joshua</creator><creatorcontrib>Geerts, Bart ; Parsons, David ; Ziegler, Conrad L. ; Weckwerth, Tammy M. ; Biggerstaff, Michael I. ; Clark, Richard D. ; Coniglio, Michael C. ; Demoz, Belay B. ; Ferrare, Richard A. ; Gallus, William A. ; Haghi, Kevin ; Hanesiak, John M. ; Klein, Petra M. ; Knupp, Kevin R. ; Kosiba, Karen ; McFarquhar, Greg M. ; Moore, James A. ; Nehrir, Amin R. ; Parker, Matthew D. ; Pinto, James O. ; Rauber, Robert M. ; Schumacher, Russ S. ; Turner, David D. ; Wang, Qing ; Wang, Xuguang ; Wang, Zhien ; Wurman, Joshua</creatorcontrib><description>The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/bams-d-15-00257.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Boundary layers ; Climate ; Climate models ; Cold ; Cold pools ; Convection ; Convective activity ; Convective available potential energy ; Environmental aspects ; Feedback ; Gravity waves ; Low-level jets ; Lower troposphere ; Mesoscale convective systems ; Mesoscale phenomena ; Nighttime ; Potential energy ; Precipitation ; Precipitation (Meteorology) ; Propagation ; Radar ; Research aircraft ; Simulation ; Solar heating ; Solitary waves ; Stable boundary layer ; Troposphere ; Warm seasons ; Weather ; Weather stations</subject><ispartof>Bulletin of the American Meteorological Society, 2017-04, Vol.98 (4), p.767-786</ispartof><rights>2017 American Meteorological Society</rights><rights>COPYRIGHT 2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</citedby><cites>FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3667,27903,27904,57996,58229</link.rule.ids></links><search><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Ziegler, Conrad L.</creatorcontrib><creatorcontrib>Weckwerth, Tammy M.</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Clark, Richard D.</creatorcontrib><creatorcontrib>Coniglio, Michael C.</creatorcontrib><creatorcontrib>Demoz, Belay B.</creatorcontrib><creatorcontrib>Ferrare, Richard A.</creatorcontrib><creatorcontrib>Gallus, William A.</creatorcontrib><creatorcontrib>Haghi, Kevin</creatorcontrib><creatorcontrib>Hanesiak, John M.</creatorcontrib><creatorcontrib>Klein, Petra M.</creatorcontrib><creatorcontrib>Knupp, Kevin R.</creatorcontrib><creatorcontrib>Kosiba, Karen</creatorcontrib><creatorcontrib>McFarquhar, Greg M.</creatorcontrib><creatorcontrib>Moore, James A.</creatorcontrib><creatorcontrib>Nehrir, Amin R.</creatorcontrib><creatorcontrib>Parker, Matthew D.</creatorcontrib><creatorcontrib>Pinto, James O.</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Schumacher, Russ S.</creatorcontrib><creatorcontrib>Turner, David D.</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Wang, Xuguang</creatorcontrib><creatorcontrib>Wang, Zhien</creatorcontrib><creatorcontrib>Wurman, Joshua</creatorcontrib><title>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</title><title>Bulletin of the American Meteorological Society</title><description>The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.</description><subject>Boundary layers</subject><subject>Climate</subject><subject>Climate models</subject><subject>Cold</subject><subject>Cold pools</subject><subject>Convection</subject><subject>Convective activity</subject><subject>Convective available potential energy</subject><subject>Environmental aspects</subject><subject>Feedback</subject><subject>Gravity waves</subject><subject>Low-level jets</subject><subject>Lower troposphere</subject><subject>Mesoscale convective systems</subject><subject>Mesoscale phenomena</subject><subject>Nighttime</subject><subject>Potential energy</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Propagation</subject><subject>Radar</subject><subject>Research aircraft</subject><subject>Simulation</subject><subject>Solar heating</subject><subject>Solitary waves</subject><subject>Stable boundary layer</subject><subject>Troposphere</subject><subject>Warm seasons</subject><subject>Weather</subject><subject>Weather stations</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkVFr2zAQx8XYYFm3D7CHgmFPe3Cqk3SWvTcvcRsXLymN11ehKnJwSOJWcqD99lWa0hIIehD63-93hzhCfgIdAki8uNcbHy9iwJhShnIIn8gAkNGYCik_kwGllIcSlV_JN-9X-ydPYUD-1JMiYhQwuqnycjqPiqq4y-tiHI1m07tiVJezaZTX0bS8mtTRZVlU4-jmdnYdKt_Jl0avvf3xdp-R_5dFPZrE1eyqHOVVbFDwPr5nGdNGC2kQU4QsoZihTRpAQJ5kNNVyYa1mIJAvdAgkoGlEY1OBaWM0PyO_Dn0fXPe4s75Xq27ntmGkgoyJJA0GfFBLvbaq3TZd77TZtN6oXOwxkXIWqPgEtbRb6_S629qmDfERPzzBh7Owm9acFH4fCYHp7VO_1DvvVTm_PWbhwBrXee9sox5cu9HuWQFV-62qv_m_uRorQPW6VbX_5vnBWfm-c-8CS5jgEiR_ATHulEs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Geerts, Bart</creator><creator>Parsons, David</creator><creator>Ziegler, Conrad L.</creator><creator>Weckwerth, Tammy M.</creator><creator>Biggerstaff, Michael I.</creator><creator>Clark, Richard D.</creator><creator>Coniglio, Michael C.</creator><creator>Demoz, Belay B.</creator><creator>Ferrare, Richard A.</creator><creator>Gallus, William A.</creator><creator>Haghi, Kevin</creator><creator>Hanesiak, John M.</creator><creator>Klein, Petra M.</creator><creator>Knupp, Kevin R.</creator><creator>Kosiba, Karen</creator><creator>McFarquhar, Greg M.</creator><creator>Moore, James A.</creator><creator>Nehrir, Amin R.</creator><creator>Parker, Matthew D.</creator><creator>Pinto, James O.</creator><creator>Rauber, Robert M.</creator><creator>Schumacher, Russ S.</creator><creator>Turner, David D.</creator><creator>Wang, Qing</creator><creator>Wang, Xuguang</creator><creator>Wang, Zhien</creator><creator>Wurman, Joshua</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</title><author>Geerts, Bart ; Parsons, David ; Ziegler, Conrad L. ; Weckwerth, Tammy M. ; Biggerstaff, Michael I. ; Clark, Richard D. ; Coniglio, Michael C. ; Demoz, Belay B. ; Ferrare, Richard A. ; Gallus, William A. ; Haghi, Kevin ; Hanesiak, John M. ; Klein, Petra M. ; Knupp, Kevin R. ; Kosiba, Karen ; McFarquhar, Greg M. ; Moore, James A. ; Nehrir, Amin R. ; Parker, Matthew D. ; Pinto, James O. ; Rauber, Robert M. ; Schumacher, Russ S. ; Turner, David D. ; Wang, Qing ; Wang, Xuguang ; Wang, Zhien ; Wurman, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary layers</topic><topic>Climate</topic><topic>Climate models</topic><topic>Cold</topic><topic>Cold pools</topic><topic>Convection</topic><topic>Convective activity</topic><topic>Convective available potential energy</topic><topic>Environmental aspects</topic><topic>Feedback</topic><topic>Gravity waves</topic><topic>Low-level jets</topic><topic>Lower troposphere</topic><topic>Mesoscale convective systems</topic><topic>Mesoscale phenomena</topic><topic>Nighttime</topic><topic>Potential energy</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Propagation</topic><topic>Radar</topic><topic>Research aircraft</topic><topic>Simulation</topic><topic>Solar heating</topic><topic>Solitary waves</topic><topic>Stable boundary layer</topic><topic>Troposphere</topic><topic>Warm seasons</topic><topic>Weather</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Ziegler, Conrad L.</creatorcontrib><creatorcontrib>Weckwerth, Tammy M.</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Clark, Richard D.</creatorcontrib><creatorcontrib>Coniglio, Michael C.</creatorcontrib><creatorcontrib>Demoz, Belay B.</creatorcontrib><creatorcontrib>Ferrare, Richard A.</creatorcontrib><creatorcontrib>Gallus, William A.</creatorcontrib><creatorcontrib>Haghi, Kevin</creatorcontrib><creatorcontrib>Hanesiak, John M.</creatorcontrib><creatorcontrib>Klein, Petra M.</creatorcontrib><creatorcontrib>Knupp, Kevin R.</creatorcontrib><creatorcontrib>Kosiba, Karen</creatorcontrib><creatorcontrib>McFarquhar, Greg M.</creatorcontrib><creatorcontrib>Moore, James A.</creatorcontrib><creatorcontrib>Nehrir, Amin R.</creatorcontrib><creatorcontrib>Parker, Matthew D.</creatorcontrib><creatorcontrib>Pinto, James O.</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Schumacher, Russ S.</creatorcontrib><creatorcontrib>Turner, David D.</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Wang, Xuguang</creatorcontrib><creatorcontrib>Wang, Zhien</creatorcontrib><creatorcontrib>Wurman, Joshua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Bart</au><au>Parsons, David</au><au>Ziegler, Conrad L.</au><au>Weckwerth, Tammy M.</au><au>Biggerstaff, Michael I.</au><au>Clark, Richard D.</au><au>Coniglio, Michael C.</au><au>Demoz, Belay B.</au><au>Ferrare, Richard A.</au><au>Gallus, William A.</au><au>Haghi, Kevin</au><au>Hanesiak, John M.</au><au>Klein, Petra M.</au><au>Knupp, Kevin R.</au><au>Kosiba, Karen</au><au>McFarquhar, Greg M.</au><au>Moore, James A.</au><au>Nehrir, Amin R.</au><au>Parker, Matthew D.</au><au>Pinto, James O.</au><au>Rauber, Robert M.</au><au>Schumacher, Russ S.</au><au>Turner, David D.</au><au>Wang, Qing</au><au>Wang, Xuguang</au><au>Wang, Zhien</au><au>Wurman, Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>98</volume><issue>4</issue><spage>767</spage><epage>786</epage><pages>767-786</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/bams-d-15-00257.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2017-04, Vol.98 (4), p.767-786 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_proquest_journals_1924680711 |
source | American Meteorological Society; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
subjects | Boundary layers Climate Climate models Cold Cold pools Convection Convective activity Convective available potential energy Environmental aspects Feedback Gravity waves Low-level jets Lower troposphere Mesoscale convective systems Mesoscale phenomena Nighttime Potential energy Precipitation Precipitation (Meteorology) Propagation Radar Research aircraft Simulation Solar heating Solitary waves Stable boundary layer Troposphere Warm seasons Weather Weather stations |
title | THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%202015%20PLAINS%20ELEVATED%20CONVECTION%20AT%20NIGHT%20FIELD%20PROJECT&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Geerts,%20Bart&rft.date=2017-04-01&rft.volume=98&rft.issue=4&rft.spage=767&rft.epage=786&rft.pages=767-786&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/bams-d-15-00257.1&rft_dat=%3Cgale_proqu%3EA492464832%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924680711&rft_id=info:pmid/&rft_galeid=A492464832&rft_jstor_id=26243717&rfr_iscdi=true |