THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT

The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2017-04, Vol.98 (4), p.767-786
Hauptverfasser: Geerts, Bart, Parsons, David, Ziegler, Conrad L., Weckwerth, Tammy M., Biggerstaff, Michael I., Clark, Richard D., Coniglio, Michael C., Demoz, Belay B., Ferrare, Richard A., Gallus, William A., Haghi, Kevin, Hanesiak, John M., Klein, Petra M., Knupp, Kevin R., Kosiba, Karen, McFarquhar, Greg M., Moore, James A., Nehrir, Amin R., Parker, Matthew D., Pinto, James O., Rauber, Robert M., Schumacher, Russ S., Turner, David D., Wang, Qing, Wang, Xuguang, Wang, Zhien, Wurman, Joshua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 4
container_start_page 767
container_title Bulletin of the American Meteorological Society
container_volume 98
creator Geerts, Bart
Parsons, David
Ziegler, Conrad L.
Weckwerth, Tammy M.
Biggerstaff, Michael I.
Clark, Richard D.
Coniglio, Michael C.
Demoz, Belay B.
Ferrare, Richard A.
Gallus, William A.
Haghi, Kevin
Hanesiak, John M.
Klein, Petra M.
Knupp, Kevin R.
Kosiba, Karen
McFarquhar, Greg M.
Moore, James A.
Nehrir, Amin R.
Parker, Matthew D.
Pinto, James O.
Rauber, Robert M.
Schumacher, Russ S.
Turner, David D.
Wang, Qing
Wang, Xuguang
Wang, Zhien
Wurman, Joshua
description The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.
doi_str_mv 10.1175/bams-d-15-00257.1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1924680711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A492464832</galeid><jstor_id>26243717</jstor_id><sourcerecordid>A492464832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</originalsourceid><addsrcrecordid>eNptkVFr2zAQx8XYYFm3D7CHgmFPe3Cqk3SWvTcvcRsXLymN11ehKnJwSOJWcqD99lWa0hIIehD63-93hzhCfgIdAki8uNcbHy9iwJhShnIIn8gAkNGYCik_kwGllIcSlV_JN-9X-ydPYUD-1JMiYhQwuqnycjqPiqq4y-tiHI1m07tiVJezaZTX0bS8mtTRZVlU4-jmdnYdKt_Jl0avvf3xdp-R_5dFPZrE1eyqHOVVbFDwPr5nGdNGC2kQU4QsoZihTRpAQJ5kNNVyYa1mIJAvdAgkoGlEY1OBaWM0PyO_Dn0fXPe4s75Xq27ntmGkgoyJJA0GfFBLvbaq3TZd77TZtN6oXOwxkXIWqPgEtbRb6_S629qmDfERPzzBh7Owm9acFH4fCYHp7VO_1DvvVTm_PWbhwBrXee9sox5cu9HuWQFV-62qv_m_uRorQPW6VbX_5vnBWfm-c-8CS5jgEiR_ATHulEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924680711</pqid></control><display><type>article</type><title>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</title><source>American Meteorological Society</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Geerts, Bart ; Parsons, David ; Ziegler, Conrad L. ; Weckwerth, Tammy M. ; Biggerstaff, Michael I. ; Clark, Richard D. ; Coniglio, Michael C. ; Demoz, Belay B. ; Ferrare, Richard A. ; Gallus, William A. ; Haghi, Kevin ; Hanesiak, John M. ; Klein, Petra M. ; Knupp, Kevin R. ; Kosiba, Karen ; McFarquhar, Greg M. ; Moore, James A. ; Nehrir, Amin R. ; Parker, Matthew D. ; Pinto, James O. ; Rauber, Robert M. ; Schumacher, Russ S. ; Turner, David D. ; Wang, Qing ; Wang, Xuguang ; Wang, Zhien ; Wurman, Joshua</creator><creatorcontrib>Geerts, Bart ; Parsons, David ; Ziegler, Conrad L. ; Weckwerth, Tammy M. ; Biggerstaff, Michael I. ; Clark, Richard D. ; Coniglio, Michael C. ; Demoz, Belay B. ; Ferrare, Richard A. ; Gallus, William A. ; Haghi, Kevin ; Hanesiak, John M. ; Klein, Petra M. ; Knupp, Kevin R. ; Kosiba, Karen ; McFarquhar, Greg M. ; Moore, James A. ; Nehrir, Amin R. ; Parker, Matthew D. ; Pinto, James O. ; Rauber, Robert M. ; Schumacher, Russ S. ; Turner, David D. ; Wang, Qing ; Wang, Xuguang ; Wang, Zhien ; Wurman, Joshua</creatorcontrib><description>The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/bams-d-15-00257.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Boundary layers ; Climate ; Climate models ; Cold ; Cold pools ; Convection ; Convective activity ; Convective available potential energy ; Environmental aspects ; Feedback ; Gravity waves ; Low-level jets ; Lower troposphere ; Mesoscale convective systems ; Mesoscale phenomena ; Nighttime ; Potential energy ; Precipitation ; Precipitation (Meteorology) ; Propagation ; Radar ; Research aircraft ; Simulation ; Solar heating ; Solitary waves ; Stable boundary layer ; Troposphere ; Warm seasons ; Weather ; Weather stations</subject><ispartof>Bulletin of the American Meteorological Society, 2017-04, Vol.98 (4), p.767-786</ispartof><rights>2017 American Meteorological Society</rights><rights>COPYRIGHT 2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</citedby><cites>FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3667,27903,27904,57996,58229</link.rule.ids></links><search><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Ziegler, Conrad L.</creatorcontrib><creatorcontrib>Weckwerth, Tammy M.</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Clark, Richard D.</creatorcontrib><creatorcontrib>Coniglio, Michael C.</creatorcontrib><creatorcontrib>Demoz, Belay B.</creatorcontrib><creatorcontrib>Ferrare, Richard A.</creatorcontrib><creatorcontrib>Gallus, William A.</creatorcontrib><creatorcontrib>Haghi, Kevin</creatorcontrib><creatorcontrib>Hanesiak, John M.</creatorcontrib><creatorcontrib>Klein, Petra M.</creatorcontrib><creatorcontrib>Knupp, Kevin R.</creatorcontrib><creatorcontrib>Kosiba, Karen</creatorcontrib><creatorcontrib>McFarquhar, Greg M.</creatorcontrib><creatorcontrib>Moore, James A.</creatorcontrib><creatorcontrib>Nehrir, Amin R.</creatorcontrib><creatorcontrib>Parker, Matthew D.</creatorcontrib><creatorcontrib>Pinto, James O.</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Schumacher, Russ S.</creatorcontrib><creatorcontrib>Turner, David D.</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Wang, Xuguang</creatorcontrib><creatorcontrib>Wang, Zhien</creatorcontrib><creatorcontrib>Wurman, Joshua</creatorcontrib><title>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</title><title>Bulletin of the American Meteorological Society</title><description>The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.</description><subject>Boundary layers</subject><subject>Climate</subject><subject>Climate models</subject><subject>Cold</subject><subject>Cold pools</subject><subject>Convection</subject><subject>Convective activity</subject><subject>Convective available potential energy</subject><subject>Environmental aspects</subject><subject>Feedback</subject><subject>Gravity waves</subject><subject>Low-level jets</subject><subject>Lower troposphere</subject><subject>Mesoscale convective systems</subject><subject>Mesoscale phenomena</subject><subject>Nighttime</subject><subject>Potential energy</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Propagation</subject><subject>Radar</subject><subject>Research aircraft</subject><subject>Simulation</subject><subject>Solar heating</subject><subject>Solitary waves</subject><subject>Stable boundary layer</subject><subject>Troposphere</subject><subject>Warm seasons</subject><subject>Weather</subject><subject>Weather stations</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkVFr2zAQx8XYYFm3D7CHgmFPe3Cqk3SWvTcvcRsXLymN11ehKnJwSOJWcqD99lWa0hIIehD63-93hzhCfgIdAki8uNcbHy9iwJhShnIIn8gAkNGYCik_kwGllIcSlV_JN-9X-ydPYUD-1JMiYhQwuqnycjqPiqq4y-tiHI1m07tiVJezaZTX0bS8mtTRZVlU4-jmdnYdKt_Jl0avvf3xdp-R_5dFPZrE1eyqHOVVbFDwPr5nGdNGC2kQU4QsoZihTRpAQJ5kNNVyYa1mIJAvdAgkoGlEY1OBaWM0PyO_Dn0fXPe4s75Xq27ntmGkgoyJJA0GfFBLvbaq3TZd77TZtN6oXOwxkXIWqPgEtbRb6_S629qmDfERPzzBh7Owm9acFH4fCYHp7VO_1DvvVTm_PWbhwBrXee9sox5cu9HuWQFV-62qv_m_uRorQPW6VbX_5vnBWfm-c-8CS5jgEiR_ATHulEs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Geerts, Bart</creator><creator>Parsons, David</creator><creator>Ziegler, Conrad L.</creator><creator>Weckwerth, Tammy M.</creator><creator>Biggerstaff, Michael I.</creator><creator>Clark, Richard D.</creator><creator>Coniglio, Michael C.</creator><creator>Demoz, Belay B.</creator><creator>Ferrare, Richard A.</creator><creator>Gallus, William A.</creator><creator>Haghi, Kevin</creator><creator>Hanesiak, John M.</creator><creator>Klein, Petra M.</creator><creator>Knupp, Kevin R.</creator><creator>Kosiba, Karen</creator><creator>McFarquhar, Greg M.</creator><creator>Moore, James A.</creator><creator>Nehrir, Amin R.</creator><creator>Parker, Matthew D.</creator><creator>Pinto, James O.</creator><creator>Rauber, Robert M.</creator><creator>Schumacher, Russ S.</creator><creator>Turner, David D.</creator><creator>Wang, Qing</creator><creator>Wang, Xuguang</creator><creator>Wang, Zhien</creator><creator>Wurman, Joshua</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</title><author>Geerts, Bart ; Parsons, David ; Ziegler, Conrad L. ; Weckwerth, Tammy M. ; Biggerstaff, Michael I. ; Clark, Richard D. ; Coniglio, Michael C. ; Demoz, Belay B. ; Ferrare, Richard A. ; Gallus, William A. ; Haghi, Kevin ; Hanesiak, John M. ; Klein, Petra M. ; Knupp, Kevin R. ; Kosiba, Karen ; McFarquhar, Greg M. ; Moore, James A. ; Nehrir, Amin R. ; Parker, Matthew D. ; Pinto, James O. ; Rauber, Robert M. ; Schumacher, Russ S. ; Turner, David D. ; Wang, Qing ; Wang, Xuguang ; Wang, Zhien ; Wurman, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-b292aca47c55851960595e6f151536908a7deea21453da690715cf4fe8458fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary layers</topic><topic>Climate</topic><topic>Climate models</topic><topic>Cold</topic><topic>Cold pools</topic><topic>Convection</topic><topic>Convective activity</topic><topic>Convective available potential energy</topic><topic>Environmental aspects</topic><topic>Feedback</topic><topic>Gravity waves</topic><topic>Low-level jets</topic><topic>Lower troposphere</topic><topic>Mesoscale convective systems</topic><topic>Mesoscale phenomena</topic><topic>Nighttime</topic><topic>Potential energy</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Propagation</topic><topic>Radar</topic><topic>Research aircraft</topic><topic>Simulation</topic><topic>Solar heating</topic><topic>Solitary waves</topic><topic>Stable boundary layer</topic><topic>Troposphere</topic><topic>Warm seasons</topic><topic>Weather</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geerts, Bart</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Ziegler, Conrad L.</creatorcontrib><creatorcontrib>Weckwerth, Tammy M.</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Clark, Richard D.</creatorcontrib><creatorcontrib>Coniglio, Michael C.</creatorcontrib><creatorcontrib>Demoz, Belay B.</creatorcontrib><creatorcontrib>Ferrare, Richard A.</creatorcontrib><creatorcontrib>Gallus, William A.</creatorcontrib><creatorcontrib>Haghi, Kevin</creatorcontrib><creatorcontrib>Hanesiak, John M.</creatorcontrib><creatorcontrib>Klein, Petra M.</creatorcontrib><creatorcontrib>Knupp, Kevin R.</creatorcontrib><creatorcontrib>Kosiba, Karen</creatorcontrib><creatorcontrib>McFarquhar, Greg M.</creatorcontrib><creatorcontrib>Moore, James A.</creatorcontrib><creatorcontrib>Nehrir, Amin R.</creatorcontrib><creatorcontrib>Parker, Matthew D.</creatorcontrib><creatorcontrib>Pinto, James O.</creatorcontrib><creatorcontrib>Rauber, Robert M.</creatorcontrib><creatorcontrib>Schumacher, Russ S.</creatorcontrib><creatorcontrib>Turner, David D.</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Wang, Xuguang</creatorcontrib><creatorcontrib>Wang, Zhien</creatorcontrib><creatorcontrib>Wurman, Joshua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geerts, Bart</au><au>Parsons, David</au><au>Ziegler, Conrad L.</au><au>Weckwerth, Tammy M.</au><au>Biggerstaff, Michael I.</au><au>Clark, Richard D.</au><au>Coniglio, Michael C.</au><au>Demoz, Belay B.</au><au>Ferrare, Richard A.</au><au>Gallus, William A.</au><au>Haghi, Kevin</au><au>Hanesiak, John M.</au><au>Klein, Petra M.</au><au>Knupp, Kevin R.</au><au>Kosiba, Karen</au><au>McFarquhar, Greg M.</au><au>Moore, James A.</au><au>Nehrir, Amin R.</au><au>Parker, Matthew D.</au><au>Pinto, James O.</au><au>Rauber, Robert M.</au><au>Schumacher, Russ S.</au><au>Turner, David D.</au><au>Wang, Qing</au><au>Wang, Xuguang</au><au>Wang, Zhien</au><au>Wurman, Joshua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>98</volume><issue>4</issue><spage>767</spage><epage>786</epage><pages>767-786</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night. To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/bams-d-15-00257.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2017-04, Vol.98 (4), p.767-786
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_journals_1924680711
source American Meteorological Society; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
subjects Boundary layers
Climate
Climate models
Cold
Cold pools
Convection
Convective activity
Convective available potential energy
Environmental aspects
Feedback
Gravity waves
Low-level jets
Lower troposphere
Mesoscale convective systems
Mesoscale phenomena
Nighttime
Potential energy
Precipitation
Precipitation (Meteorology)
Propagation
Radar
Research aircraft
Simulation
Solar heating
Solitary waves
Stable boundary layer
Troposphere
Warm seasons
Weather
Weather stations
title THE 2015 PLAINS ELEVATED CONVECTION AT NIGHT FIELD PROJECT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%202015%20PLAINS%20ELEVATED%20CONVECTION%20AT%20NIGHT%20FIELD%20PROJECT&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Geerts,%20Bart&rft.date=2017-04-01&rft.volume=98&rft.issue=4&rft.spage=767&rft.epage=786&rft.pages=767-786&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/bams-d-15-00257.1&rft_dat=%3Cgale_proqu%3EA492464832%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924680711&rft_id=info:pmid/&rft_galeid=A492464832&rft_jstor_id=26243717&rfr_iscdi=true