Tolerating defiance? Local average treatment effects without monotonicity
Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condi...
Gespeichert in:
Veröffentlicht in: | Quantitative economics 2017-07, Vol.8 (2), p.367-396 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 2 |
container_start_page | 367 |
container_title | Quantitative economics |
container_volume | 8 |
creator | de Chaisemartin, Clément |
description | Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method. |
doi_str_mv | 10.3982/QE601 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1923951135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735384636</galeid><sourcerecordid>A735384636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4720-9c6ef937dccff6d827aa6e74a07754cbe69fd852d4e2480048ccc0d70932bb203</originalsourceid><addsrcrecordid>eNpVkN9LwzAQx4MoOOb-BKHgm9CZNM2vJxlj6mAog-25ZOllZnTNbDPH_ntT68PMPVy4-3y_uRxCI4LHVMnsaTnjmFyhARFMpYJScn1xv0Wjtt3heKiUXJABmq98BY0Ort4mJVinawPPycIbXSX6O3a2kIQGdNhDHRKwFkxok5MLn_4Ykr2vffC1My6c79CN1VULo788ROuX2Wr6li4-XufTySI1uchwqgwHq6gojbGWlzITWnMQucZCsNxsgCtbSpaVOWS5xDiXxhhcCqxottlkmA7RQ-97aPzXEdpQ7PyxqeOTBVEZVYwQyiI17qmtrqBwtfWh0SZGCXtnfB2_GusTEVGZc8qjIOkFELuuLQ6N2-vmXBBMGCOYs87zsUdOUXu-IIpu88Xv5ovlevJOZDfm_T-_LrXBN3FIxnJKfwDJw38J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923951135</pqid></control><display><type>article</type><title>Tolerating defiance? Local average treatment effects without monotonicity</title><source>DOAJ Directory of Open Access Journals</source><source>Business Source Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>de Chaisemartin, Clément</creator><creatorcontrib>de Chaisemartin, Clément</creatorcontrib><description>Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.</description><identifier>ISSN: 1759-7331</identifier><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE601</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>average treatment effect ; C21 ; C26 ; Defiance ; defiers ; Econometrics ; Estimating techniques ; instrumental variable ; Monotonicity ; partial identification</subject><ispartof>Quantitative economics, 2017-07, Vol.8 (2), p.367-396</ispartof><rights>Copyright © 2017 The Author.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4720-9c6ef937dccff6d827aa6e74a07754cbe69fd852d4e2480048ccc0d70932bb203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FQE601$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FQE601$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,1432,11561,27923,27924,45573,45574,46051,46408,46475,46832</link.rule.ids></links><search><creatorcontrib>de Chaisemartin, Clément</creatorcontrib><title>Tolerating defiance? Local average treatment effects without monotonicity</title><title>Quantitative economics</title><description>Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.</description><subject>average treatment effect</subject><subject>C21</subject><subject>C26</subject><subject>Defiance</subject><subject>defiers</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>instrumental variable</subject><subject>Monotonicity</subject><subject>partial identification</subject><issn>1759-7331</issn><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkN9LwzAQx4MoOOb-BKHgm9CZNM2vJxlj6mAog-25ZOllZnTNbDPH_ntT68PMPVy4-3y_uRxCI4LHVMnsaTnjmFyhARFMpYJScn1xv0Wjtt3heKiUXJABmq98BY0Ort4mJVinawPPycIbXSX6O3a2kIQGdNhDHRKwFkxok5MLn_4Ykr2vffC1My6c79CN1VULo788ROuX2Wr6li4-XufTySI1uchwqgwHq6gojbGWlzITWnMQucZCsNxsgCtbSpaVOWS5xDiXxhhcCqxottlkmA7RQ-97aPzXEdpQ7PyxqeOTBVEZVYwQyiI17qmtrqBwtfWh0SZGCXtnfB2_GusTEVGZc8qjIOkFELuuLQ6N2-vmXBBMGCOYs87zsUdOUXu-IIpu88Xv5ovlevJOZDfm_T-_LrXBN3FIxnJKfwDJw38J</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>de Chaisemartin, Clément</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>OT2</scope><scope>24P</scope><scope>WIN</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201707</creationdate><title>Tolerating defiance? Local average treatment effects without monotonicity</title><author>de Chaisemartin, Clément</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4720-9c6ef937dccff6d827aa6e74a07754cbe69fd852d4e2480048ccc0d70932bb203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>average treatment effect</topic><topic>C21</topic><topic>C26</topic><topic>Defiance</topic><topic>defiers</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>instrumental variable</topic><topic>Monotonicity</topic><topic>partial identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Chaisemartin, Clément</creatorcontrib><collection>EconStor</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Chaisemartin, Clément</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tolerating defiance? Local average treatment effects without monotonicity</atitle><jtitle>Quantitative economics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>367</spage><epage>396</epage><pages>367-396</pages><issn>1759-7331</issn><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/QE601</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-7331 |
ispartof | Quantitative economics, 2017-07, Vol.8 (2), p.367-396 |
issn | 1759-7331 1759-7323 1759-7331 |
language | eng |
recordid | cdi_proquest_journals_1923951135 |
source | DOAJ Directory of Open Access Journals; Business Source Complete; Wiley Free Content; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | average treatment effect C21 C26 Defiance defiers Econometrics Estimating techniques instrumental variable Monotonicity partial identification |
title | Tolerating defiance? Local average treatment effects without monotonicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tolerating%20defiance?%20Local%20average%20treatment%20effects%20without%20monotonicity&rft.jtitle=Quantitative%20economics&rft.au=de%20Chaisemartin,%20Cl%C3%A9ment&rft.date=2017-07&rft.volume=8&rft.issue=2&rft.spage=367&rft.epage=396&rft.pages=367-396&rft.issn=1759-7331&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE601&rft_dat=%3Cgale_proqu%3EA735384636%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923951135&rft_id=info:pmid/&rft_galeid=A735384636&rfr_iscdi=true |