Tolerating defiance? Local average treatment effects without monotonicity

Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative economics 2017-07, Vol.8 (2), p.367-396
1. Verfasser: de Chaisemartin, Clément
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 2
container_start_page 367
container_title Quantitative economics
container_volume 8
creator de Chaisemartin, Clément
description Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.
doi_str_mv 10.3982/QE601
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1923951135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735384636</galeid><sourcerecordid>A735384636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4720-9c6ef937dccff6d827aa6e74a07754cbe69fd852d4e2480048ccc0d70932bb203</originalsourceid><addsrcrecordid>eNpVkN9LwzAQx4MoOOb-BKHgm9CZNM2vJxlj6mAog-25ZOllZnTNbDPH_ntT68PMPVy4-3y_uRxCI4LHVMnsaTnjmFyhARFMpYJScn1xv0Wjtt3heKiUXJABmq98BY0Ort4mJVinawPPycIbXSX6O3a2kIQGdNhDHRKwFkxok5MLn_4Ykr2vffC1My6c79CN1VULo788ROuX2Wr6li4-XufTySI1uchwqgwHq6gojbGWlzITWnMQucZCsNxsgCtbSpaVOWS5xDiXxhhcCqxottlkmA7RQ-97aPzXEdpQ7PyxqeOTBVEZVYwQyiI17qmtrqBwtfWh0SZGCXtnfB2_GusTEVGZc8qjIOkFELuuLQ6N2-vmXBBMGCOYs87zsUdOUXu-IIpu88Xv5ovlevJOZDfm_T-_LrXBN3FIxnJKfwDJw38J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923951135</pqid></control><display><type>article</type><title>Tolerating defiance? Local average treatment effects without monotonicity</title><source>DOAJ Directory of Open Access Journals</source><source>Business Source Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>de Chaisemartin, Clément</creator><creatorcontrib>de Chaisemartin, Clément</creatorcontrib><description>Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.</description><identifier>ISSN: 1759-7331</identifier><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE601</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>average treatment effect ; C21 ; C26 ; Defiance ; defiers ; Econometrics ; Estimating techniques ; instrumental variable ; Monotonicity ; partial identification</subject><ispartof>Quantitative economics, 2017-07, Vol.8 (2), p.367-396</ispartof><rights>Copyright © 2017 The Author.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4720-9c6ef937dccff6d827aa6e74a07754cbe69fd852d4e2480048ccc0d70932bb203</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FQE601$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FQE601$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,1432,11561,27923,27924,45573,45574,46051,46408,46475,46832</link.rule.ids></links><search><creatorcontrib>de Chaisemartin, Clément</creatorcontrib><title>Tolerating defiance? Local average treatment effects without monotonicity</title><title>Quantitative economics</title><description>Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.</description><subject>average treatment effect</subject><subject>C21</subject><subject>C26</subject><subject>Defiance</subject><subject>defiers</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>instrumental variable</subject><subject>Monotonicity</subject><subject>partial identification</subject><issn>1759-7331</issn><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkN9LwzAQx4MoOOb-BKHgm9CZNM2vJxlj6mAog-25ZOllZnTNbDPH_ntT68PMPVy4-3y_uRxCI4LHVMnsaTnjmFyhARFMpYJScn1xv0Wjtt3heKiUXJABmq98BY0Ort4mJVinawPPycIbXSX6O3a2kIQGdNhDHRKwFkxok5MLn_4Ykr2vffC1My6c79CN1VULo788ROuX2Wr6li4-XufTySI1uchwqgwHq6gojbGWlzITWnMQucZCsNxsgCtbSpaVOWS5xDiXxhhcCqxottlkmA7RQ-97aPzXEdpQ7PyxqeOTBVEZVYwQyiI17qmtrqBwtfWh0SZGCXtnfB2_GusTEVGZc8qjIOkFELuuLQ6N2-vmXBBMGCOYs87zsUdOUXu-IIpu88Xv5ovlevJOZDfm_T-_LrXBN3FIxnJKfwDJw38J</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>de Chaisemartin, Clément</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>OT2</scope><scope>24P</scope><scope>WIN</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201707</creationdate><title>Tolerating defiance? Local average treatment effects without monotonicity</title><author>de Chaisemartin, Clément</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4720-9c6ef937dccff6d827aa6e74a07754cbe69fd852d4e2480048ccc0d70932bb203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>average treatment effect</topic><topic>C21</topic><topic>C26</topic><topic>Defiance</topic><topic>defiers</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>instrumental variable</topic><topic>Monotonicity</topic><topic>partial identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Chaisemartin, Clément</creatorcontrib><collection>EconStor</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Chaisemartin, Clément</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tolerating defiance? Local average treatment effects without monotonicity</atitle><jtitle>Quantitative economics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>367</spage><epage>396</epage><pages>367-396</pages><issn>1759-7331</issn><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>Instrumental variables (IVs) are commonly used to estimate the effects of some treatments. A valid IV should be as good as randomly assigned, it should not have a direct effect on the outcome, and it should not induce any unit to forgo treatment. This last condition, the so-called monotonicity condition, is often implausible. This paper starts by showing that actually, IVs are still valid under a weaker condition than monotonicity. It then derives conditions that are sufficient for this weaker condition to hold and whose plausibility can easily be assessed in applications. It finally reviews several applications where this weaker condition is applicable while monotonicity is not. Overall, this paper extends the applicability of the IV estimation method.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/QE601</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1759-7331
ispartof Quantitative economics, 2017-07, Vol.8 (2), p.367-396
issn 1759-7331
1759-7323
1759-7331
language eng
recordid cdi_proquest_journals_1923951135
source DOAJ Directory of Open Access Journals; Business Source Complete; Wiley Free Content; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects average treatment effect
C21
C26
Defiance
defiers
Econometrics
Estimating techniques
instrumental variable
Monotonicity
partial identification
title Tolerating defiance? Local average treatment effects without monotonicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tolerating%20defiance?%20Local%20average%20treatment%20effects%20without%20monotonicity&rft.jtitle=Quantitative%20economics&rft.au=de%20Chaisemartin,%20Cl%C3%A9ment&rft.date=2017-07&rft.volume=8&rft.issue=2&rft.spage=367&rft.epage=396&rft.pages=367-396&rft.issn=1759-7331&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE601&rft_dat=%3Cgale_proqu%3EA735384636%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923951135&rft_id=info:pmid/&rft_galeid=A735384636&rfr_iscdi=true