Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways

This paper presents a novel design of control algorithms for lane change assistance and autonomous driving on highways, based on recent results in Scenario Model Predictive Control (SCMPC). The basic idea is to account for the uncertainty in the traffic environment by a small number of future scenar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent transportation systems magazine 2017-01, Vol.9 (3), p.23-35
Hauptverfasser: Cesari, Gianluca, Schildbach, Georg, Carvalho, Ashwin, Borrelli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 3
container_start_page 23
container_title IEEE intelligent transportation systems magazine
container_volume 9
creator Cesari, Gianluca
Schildbach, Georg
Carvalho, Ashwin
Borrelli, Francesco
description This paper presents a novel design of control algorithms for lane change assistance and autonomous driving on highways, based on recent results in Scenario Model Predictive Control (SCMPC). The basic idea is to account for the uncertainty in the traffic environment by a small number of future scenarios, which is intuitive and computationally efficient. These scenarios can be generated by any model-based or data-based approach. The paper discusses the SCMPC design procedure, which is simple and can be generalized to other control challenges in automated driving, as well as the controller's robustness properties. Experimental results demonstrate the effectiveness of the SCMPC algorithm and its performance in lane change situations on highways.
doi_str_mv 10.1109/MITS.2017.2709782
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1923736250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7990647</ieee_id><sourcerecordid>1923736250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1c827ae3ce64677f93f639874d3b7014270dea20c23d2bad78026c5ee3ae720d3</originalsourceid><addsrcrecordid>eNo9kFtrAjEQhUNpoWL9AaUvgT6vzWXdbB7FXhSUFrTPISazGtHEJrsW_313UTovMwznzGE-hB4pGVJK5MtitloOGaFiyASRomQ3qEdlTjNKpbjtZi4zyiW5R4OUdqQtzsqCyR5SSwNeRxfwIljY468I1pnanQBPgq9j2OMqRDzXvl1std8AHqfkUq29Aay9xeOmDj4cQpPwa3Qn5zc4eDx1m-2vPqcHdFfpfYLBtffR9_vbajLN5p8fs8l4nhkmeZ1RUzKhgRso8kKISvKq4LIUueVrQWje_mVBM2IYt2ytrSgJK8wIgGsQjFjeR8-Xu8cYfhpItdqFJvo2UlHJuOAFG5FWRS8qE0NKESp1jO6g41lRojqUqkOpOpTqirL1PF08DgD-9UJKUuSC_wExJm9J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923736250</pqid></control><display><type>article</type><title>Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways</title><source>IEEE Electronic Library (IEL)</source><creator>Cesari, Gianluca ; Schildbach, Georg ; Carvalho, Ashwin ; Borrelli, Francesco</creator><creatorcontrib>Cesari, Gianluca ; Schildbach, Georg ; Carvalho, Ashwin ; Borrelli, Francesco</creatorcontrib><description>This paper presents a novel design of control algorithms for lane change assistance and autonomous driving on highways, based on recent results in Scenario Model Predictive Control (SCMPC). The basic idea is to account for the uncertainty in the traffic environment by a small number of future scenarios, which is intuitive and computationally efficient. These scenarios can be generated by any model-based or data-based approach. The paper discusses the SCMPC design procedure, which is simple and can be generalized to other control challenges in automated driving, as well as the controller's robustness properties. Experimental results demonstrate the effectiveness of the SCMPC algorithm and its performance in lane change situations on highways.</description><identifier>ISSN: 1939-1390</identifier><identifier>EISSN: 1941-1197</identifier><identifier>DOI: 10.1109/MITS.2017.2709782</identifier><identifier>CODEN: IITSBO</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic control ; Control algorithms ; Driving ; Hidden Markov models ; Highways ; Mathematical models ; Predictive control ; Predictive models ; Robustness ; Stochastic processes ; Trajectory ; Vehicles</subject><ispartof>IEEE intelligent transportation systems magazine, 2017-01, Vol.9 (3), p.23-35</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1c827ae3ce64677f93f639874d3b7014270dea20c23d2bad78026c5ee3ae720d3</citedby><cites>FETCH-LOGICAL-c293t-1c827ae3ce64677f93f639874d3b7014270dea20c23d2bad78026c5ee3ae720d3</cites><orcidid>0000-0002-8319-8854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7990647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7990647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cesari, Gianluca</creatorcontrib><creatorcontrib>Schildbach, Georg</creatorcontrib><creatorcontrib>Carvalho, Ashwin</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><title>Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways</title><title>IEEE intelligent transportation systems magazine</title><addtitle>MITS</addtitle><description>This paper presents a novel design of control algorithms for lane change assistance and autonomous driving on highways, based on recent results in Scenario Model Predictive Control (SCMPC). The basic idea is to account for the uncertainty in the traffic environment by a small number of future scenarios, which is intuitive and computationally efficient. These scenarios can be generated by any model-based or data-based approach. The paper discusses the SCMPC design procedure, which is simple and can be generalized to other control challenges in automated driving, as well as the controller's robustness properties. Experimental results demonstrate the effectiveness of the SCMPC algorithm and its performance in lane change situations on highways.</description><subject>Automatic control</subject><subject>Control algorithms</subject><subject>Driving</subject><subject>Hidden Markov models</subject><subject>Highways</subject><subject>Mathematical models</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Stochastic processes</subject><subject>Trajectory</subject><subject>Vehicles</subject><issn>1939-1390</issn><issn>1941-1197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtrAjEQhUNpoWL9AaUvgT6vzWXdbB7FXhSUFrTPISazGtHEJrsW_313UTovMwznzGE-hB4pGVJK5MtitloOGaFiyASRomQ3qEdlTjNKpbjtZi4zyiW5R4OUdqQtzsqCyR5SSwNeRxfwIljY468I1pnanQBPgq9j2OMqRDzXvl1std8AHqfkUq29Aay9xeOmDj4cQpPwa3Qn5zc4eDx1m-2vPqcHdFfpfYLBtffR9_vbajLN5p8fs8l4nhkmeZ1RUzKhgRso8kKISvKq4LIUueVrQWje_mVBM2IYt2ytrSgJK8wIgGsQjFjeR8-Xu8cYfhpItdqFJvo2UlHJuOAFG5FWRS8qE0NKESp1jO6g41lRojqUqkOpOpTqirL1PF08DgD-9UJKUuSC_wExJm9J</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Cesari, Gianluca</creator><creator>Schildbach, Georg</creator><creator>Carvalho, Ashwin</creator><creator>Borrelli, Francesco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-8319-8854</orcidid></search><sort><creationdate>20170101</creationdate><title>Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways</title><author>Cesari, Gianluca ; Schildbach, Georg ; Carvalho, Ashwin ; Borrelli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1c827ae3ce64677f93f639874d3b7014270dea20c23d2bad78026c5ee3ae720d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automatic control</topic><topic>Control algorithms</topic><topic>Driving</topic><topic>Hidden Markov models</topic><topic>Highways</topic><topic>Mathematical models</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Stochastic processes</topic><topic>Trajectory</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Cesari, Gianluca</creatorcontrib><creatorcontrib>Schildbach, Georg</creatorcontrib><creatorcontrib>Carvalho, Ashwin</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IEEE intelligent transportation systems magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cesari, Gianluca</au><au>Schildbach, Georg</au><au>Carvalho, Ashwin</au><au>Borrelli, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways</atitle><jtitle>IEEE intelligent transportation systems magazine</jtitle><stitle>MITS</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>9</volume><issue>3</issue><spage>23</spage><epage>35</epage><pages>23-35</pages><issn>1939-1390</issn><eissn>1941-1197</eissn><coden>IITSBO</coden><abstract>This paper presents a novel design of control algorithms for lane change assistance and autonomous driving on highways, based on recent results in Scenario Model Predictive Control (SCMPC). The basic idea is to account for the uncertainty in the traffic environment by a small number of future scenarios, which is intuitive and computationally efficient. These scenarios can be generated by any model-based or data-based approach. The paper discusses the SCMPC design procedure, which is simple and can be generalized to other control challenges in automated driving, as well as the controller's robustness properties. Experimental results demonstrate the effectiveness of the SCMPC algorithm and its performance in lane change situations on highways.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MITS.2017.2709782</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8319-8854</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1390
ispartof IEEE intelligent transportation systems magazine, 2017-01, Vol.9 (3), p.23-35
issn 1939-1390
1941-1197
language eng
recordid cdi_proquest_journals_1923736250
source IEEE Electronic Library (IEL)
subjects Automatic control
Control algorithms
Driving
Hidden Markov models
Highways
Mathematical models
Predictive control
Predictive models
Robustness
Stochastic processes
Trajectory
Vehicles
title Scenario Model Predictive Control for Lane Change Assistance and Autonomous Driving on Highways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenario%20Model%20Predictive%20Control%20for%20Lane%20Change%20Assistance%20and%20Autonomous%20Driving%20on%20Highways&rft.jtitle=IEEE%20intelligent%20transportation%20systems%20magazine&rft.au=Cesari,%20Gianluca&rft.date=2017-01-01&rft.volume=9&rft.issue=3&rft.spage=23&rft.epage=35&rft.pages=23-35&rft.issn=1939-1390&rft.eissn=1941-1197&rft.coden=IITSBO&rft_id=info:doi/10.1109/MITS.2017.2709782&rft_dat=%3Cproquest_RIE%3E1923736250%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923736250&rft_id=info:pmid/&rft_ieee_id=7990647&rfr_iscdi=true