Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg(OH)2 Catalysts in Continuous Low‐Temperature CO Oxidation
Au/Mg(OH)2 catalysts have been reported to be far more active in the catalytic low‐temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO2 catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interactio...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2017-08, Vol.56 (32), p.9597-9602 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9602 |
---|---|
container_issue | 32 |
container_start_page | 9597 |
container_title | Angewandte Chemie International Edition |
container_volume | 56 |
creator | Wang, Yuchen Widmann, Daniel Lehnert, Felix Gu, Dong Schüth, Ferdi Behm, R. Jürgen |
description | Au/Mg(OH)2 catalysts have been reported to be far more active in the catalytic low‐temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO2 catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interaction of Au/Mg(OH)2 with CO2 formed during the low‐temperature reaction is the main reason for the superior catalyst performance. This feature enables rapid product desorption and hence continuous CO oxidation at temperatures well below 0 °C. At these temperatures, Au/TiO2 also catalyzes CO2 formation, but does not allow for CO2 desorption, which results in self‐poisoning. At higher temperatures (above 0 °C), however, CO2 formation is rate‐limiting, which results in a much higher activity for Au/TiO2 under these reaction conditions.
Kinetic and in situ IR measurements show that the interaction of the catalyst surface with the CO2 formed during low‐temperature CO oxidation is the crucial support effect at low temperatures ( |
doi_str_mv | 10.1002/anie.201702178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1923616206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923616206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3918-d0880583f987e536140eab033647b01284551d4f6210f01e16d11a6b8401c85c3</originalsourceid><addsrcrecordid>eNqFkM9O3DAQh62qqPxprz1WlnqhhywzduJ4e4uihUUs3Uql58ibOIvRbrzYDjQ3JF6AZ-RJMFqgR04zGn3zzehHyFeEEQKwI9UZPWKAOTDM5QeyhxnDhOc5_xj7lPMklxnukn3vryIvJYhPZJdJIRlAvkfuixtrGtMt6R-9ah_vHn5b420XBz9pQc_0QI-1Cr3TtLWOhktNp2Z5SYs6mBsTBmpbWvRH58vD-fQHo6UKajX44KnpaGm7YLre9p7O7G1UX-j1RrutrZzT-T_TqGBs95nstGrl9ZeXekD-Hk8uymkym5-clsUsqfkYZdJA_D6TvB3LXGdcYApaLYBzkeYLQCbTLMMmbQVDaAE1igZRiYVMAWuZ1fyAfN96N85e99qH6sr2rosnKxyzKBQMRKRGW6p21nun22rjzFq5oUKonjOvnjOv3jKPC99etP1irZs3_DXkCIy3wK1Z6eEdXVX8Op38lz8BjrqNaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923616206</pqid></control><display><type>article</type><title>Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg(OH)2 Catalysts in Continuous Low‐Temperature CO Oxidation</title><source>Access via Wiley Online Library</source><creator>Wang, Yuchen ; Widmann, Daniel ; Lehnert, Felix ; Gu, Dong ; Schüth, Ferdi ; Behm, R. Jürgen</creator><creatorcontrib>Wang, Yuchen ; Widmann, Daniel ; Lehnert, Felix ; Gu, Dong ; Schüth, Ferdi ; Behm, R. Jürgen</creatorcontrib><description>Au/Mg(OH)2 catalysts have been reported to be far more active in the catalytic low‐temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO2 catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interaction of Au/Mg(OH)2 with CO2 formed during the low‐temperature reaction is the main reason for the superior catalyst performance. This feature enables rapid product desorption and hence continuous CO oxidation at temperatures well below 0 °C. At these temperatures, Au/TiO2 also catalyzes CO2 formation, but does not allow for CO2 desorption, which results in self‐poisoning. At higher temperatures (above 0 °C), however, CO2 formation is rate‐limiting, which results in a much higher activity for Au/TiO2 under these reaction conditions.
Kinetic and in situ IR measurements show that the interaction of the catalyst surface with the CO2 formed during low‐temperature CO oxidation is the crucial support effect at low temperatures (<0 °C). Owing to the weak interaction of CO2 with Au/Mg(OH)2, which enables product desorption, this catalyst is far more active than other Au catalysts for the continuous CO oxidation below 0 °C.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201702178</identifier><identifier>PMID: 28682007</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Au/Mg(OH)2 ; Carbon dioxide ; Catalysis ; Catalysts ; CO oxidation ; Cobalt ; Desorption ; Gold ; gold catalysts ; Infrared spectroscopy ; IR spectroscopy ; kinetics ; Low temperature ; Oxidation ; Poisoning ; Spectroscopic analysis ; Temperature effects ; Titanium dioxide</subject><ispartof>Angewandte Chemie International Edition, 2017-08, Vol.56 (32), p.9597-9602</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3918-d0880583f987e536140eab033647b01284551d4f6210f01e16d11a6b8401c85c3</citedby><cites>FETCH-LOGICAL-c3918-d0880583f987e536140eab033647b01284551d4f6210f01e16d11a6b8401c85c3</cites><orcidid>0000-0002-7565-0628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201702178$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201702178$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28682007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuchen</creatorcontrib><creatorcontrib>Widmann, Daniel</creatorcontrib><creatorcontrib>Lehnert, Felix</creatorcontrib><creatorcontrib>Gu, Dong</creatorcontrib><creatorcontrib>Schüth, Ferdi</creatorcontrib><creatorcontrib>Behm, R. Jürgen</creatorcontrib><title>Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg(OH)2 Catalysts in Continuous Low‐Temperature CO Oxidation</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Au/Mg(OH)2 catalysts have been reported to be far more active in the catalytic low‐temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO2 catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interaction of Au/Mg(OH)2 with CO2 formed during the low‐temperature reaction is the main reason for the superior catalyst performance. This feature enables rapid product desorption and hence continuous CO oxidation at temperatures well below 0 °C. At these temperatures, Au/TiO2 also catalyzes CO2 formation, but does not allow for CO2 desorption, which results in self‐poisoning. At higher temperatures (above 0 °C), however, CO2 formation is rate‐limiting, which results in a much higher activity for Au/TiO2 under these reaction conditions.
Kinetic and in situ IR measurements show that the interaction of the catalyst surface with the CO2 formed during low‐temperature CO oxidation is the crucial support effect at low temperatures (<0 °C). Owing to the weak interaction of CO2 with Au/Mg(OH)2, which enables product desorption, this catalyst is far more active than other Au catalysts for the continuous CO oxidation below 0 °C.</description><subject>Au/Mg(OH)2</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>CO oxidation</subject><subject>Cobalt</subject><subject>Desorption</subject><subject>Gold</subject><subject>gold catalysts</subject><subject>Infrared spectroscopy</subject><subject>IR spectroscopy</subject><subject>kinetics</subject><subject>Low temperature</subject><subject>Oxidation</subject><subject>Poisoning</subject><subject>Spectroscopic analysis</subject><subject>Temperature effects</subject><subject>Titanium dioxide</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM9O3DAQh62qqPxprz1WlnqhhywzduJ4e4uihUUs3Uql58ibOIvRbrzYDjQ3JF6AZ-RJMFqgR04zGn3zzehHyFeEEQKwI9UZPWKAOTDM5QeyhxnDhOc5_xj7lPMklxnukn3vryIvJYhPZJdJIRlAvkfuixtrGtMt6R-9ah_vHn5b420XBz9pQc_0QI-1Cr3TtLWOhktNp2Z5SYs6mBsTBmpbWvRH58vD-fQHo6UKajX44KnpaGm7YLre9p7O7G1UX-j1RrutrZzT-T_TqGBs95nstGrl9ZeXekD-Hk8uymkym5-clsUsqfkYZdJA_D6TvB3LXGdcYApaLYBzkeYLQCbTLMMmbQVDaAE1igZRiYVMAWuZ1fyAfN96N85e99qH6sr2rosnKxyzKBQMRKRGW6p21nun22rjzFq5oUKonjOvnjOv3jKPC99etP1irZs3_DXkCIy3wK1Z6eEdXVX8Op38lz8BjrqNaw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Wang, Yuchen</creator><creator>Widmann, Daniel</creator><creator>Lehnert, Felix</creator><creator>Gu, Dong</creator><creator>Schüth, Ferdi</creator><creator>Behm, R. Jürgen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-7565-0628</orcidid></search><sort><creationdate>20170801</creationdate><title>Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg(OH)2 Catalysts in Continuous Low‐Temperature CO Oxidation</title><author>Wang, Yuchen ; Widmann, Daniel ; Lehnert, Felix ; Gu, Dong ; Schüth, Ferdi ; Behm, R. Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3918-d0880583f987e536140eab033647b01284551d4f6210f01e16d11a6b8401c85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Au/Mg(OH)2</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>CO oxidation</topic><topic>Cobalt</topic><topic>Desorption</topic><topic>Gold</topic><topic>gold catalysts</topic><topic>Infrared spectroscopy</topic><topic>IR spectroscopy</topic><topic>kinetics</topic><topic>Low temperature</topic><topic>Oxidation</topic><topic>Poisoning</topic><topic>Spectroscopic analysis</topic><topic>Temperature effects</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuchen</creatorcontrib><creatorcontrib>Widmann, Daniel</creatorcontrib><creatorcontrib>Lehnert, Felix</creatorcontrib><creatorcontrib>Gu, Dong</creatorcontrib><creatorcontrib>Schüth, Ferdi</creatorcontrib><creatorcontrib>Behm, R. Jürgen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuchen</au><au>Widmann, Daniel</au><au>Lehnert, Felix</au><au>Gu, Dong</au><au>Schüth, Ferdi</au><au>Behm, R. Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg(OH)2 Catalysts in Continuous Low‐Temperature CO Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>56</volume><issue>32</issue><spage>9597</spage><epage>9602</epage><pages>9597-9602</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Au/Mg(OH)2 catalysts have been reported to be far more active in the catalytic low‐temperature CO oxidation (below 0 °C) than the thoroughly investigated Au/TiO2 catalysts. Based on kinetic and in situ infrared spectroscopy (DRIFTS) measurements, we demonstrate that the comparatively weak interaction of Au/Mg(OH)2 with CO2 formed during the low‐temperature reaction is the main reason for the superior catalyst performance. This feature enables rapid product desorption and hence continuous CO oxidation at temperatures well below 0 °C. At these temperatures, Au/TiO2 also catalyzes CO2 formation, but does not allow for CO2 desorption, which results in self‐poisoning. At higher temperatures (above 0 °C), however, CO2 formation is rate‐limiting, which results in a much higher activity for Au/TiO2 under these reaction conditions.
Kinetic and in situ IR measurements show that the interaction of the catalyst surface with the CO2 formed during low‐temperature CO oxidation is the crucial support effect at low temperatures (<0 °C). Owing to the weak interaction of CO2 with Au/Mg(OH)2, which enables product desorption, this catalyst is far more active than other Au catalysts for the continuous CO oxidation below 0 °C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28682007</pmid><doi>10.1002/anie.201702178</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7565-0628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2017-08, Vol.56 (32), p.9597-9602 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_1923616206 |
source | Access via Wiley Online Library |
subjects | Au/Mg(OH)2 Carbon dioxide Catalysis Catalysts CO oxidation Cobalt Desorption Gold gold catalysts Infrared spectroscopy IR spectroscopy kinetics Low temperature Oxidation Poisoning Spectroscopic analysis Temperature effects Titanium dioxide |
title | Avoiding Self‐Poisoning: A Key Feature for the High Activity of Au/Mg(OH)2 Catalysts in Continuous Low‐Temperature CO Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avoiding%20Self%E2%80%90Poisoning:%20A%20Key%20Feature%20for%20the%20High%20Activity%20of%20Au/Mg(OH)2%20Catalysts%20in%20Continuous%20Low%E2%80%90Temperature%20CO%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Yuchen&rft.date=2017-08-01&rft.volume=56&rft.issue=32&rft.spage=9597&rft.epage=9602&rft.pages=9597-9602&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201702178&rft_dat=%3Cproquest_cross%3E1923616206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923616206&rft_id=info:pmid/28682007&rfr_iscdi=true |