Channel modeling for high-speed indoor powerline communication systems: the lattice approach

The transmission of high-frequency signals over powerlines, known as powerline communications (PLC), plays an important role in contributing toward global goals for broadband services inside the home and office. In this paper, we aim to contribute to this ideal by presenting a powerline channel mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales des télécommunications 2017-08, Vol.72 (7-8), p.499-511
Hauptverfasser: Mosalaosi, Modisa, Afullo, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 511
container_issue 7-8
container_start_page 499
container_title Annales des télécommunications
container_volume 72
creator Mosalaosi, Modisa
Afullo, Thomas
description The transmission of high-frequency signals over powerlines, known as powerline communications (PLC), plays an important role in contributing toward global goals for broadband services inside the home and office. In this paper, we aim to contribute to this ideal by presenting a powerline channel modeling approach which describes a powerline network as a lattice structure. In a lattice structure, a signal propagates from one end into a network of boundaries (branches) through numerous paths characterized by different reflection/transmission properties. Due to theoretically infinite number of reflections likely to be experienced by a propagating wave, we determine the optimum number of paths required for meaningful contribution toward the overall signal level at the receiver. The propagation parameters are obtained through measurements and other model parameters are derived from deterministic powerline networks. It is observed that the notch positions in the transfer characteristics are associated with the branch lengths in the network. Short branches will result in fewer notches in a fixed bandwidth as compared to longer branches. Generally, the channel attenuation increase with network size in terms of number of branches. The proposed model compares well with experimental data.
doi_str_mv 10.1007/s12243-016-0554-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1923321611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923321611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-805a399e0bb1dced201e6275bfdb3d0d7ed188bfdc2c7bb12ff112582cc9f1b23</originalsourceid><addsrcrecordid>eNp1kEtLxDAQx4MouK5-AG8Bz9FM0vThTRZfsOBFb0JIk-m2S9vUpIvstzfLevDiaZiZ_wN-hFwDvwXOi7sIQmSSccgZVypj8oQsoFIlq2SlTsmCcy5ZJrPinFzEuOU854VSC_K5as04Yk8H77Dvxg1tfKBtt2lZnBAd7Ubn02Xy3xjSH6n1w7AbO2vmzo807uOMQ7ync4u0N_PcWaRmmoI3tr0kZ43pI179ziX5eHp8X72w9dvz6-phzayEfGYlV0ZWFfK6BmfRCQ6Yi0LVjaul465AB2WZNitskTSiaQCEKoW1VQO1kEtyc8xNtV87jLPe-l0YU6WGSkgpIAdIKjiqbPAxBmz0FLrBhL0Grg8Q9RGiThD1AaKWySOOnpi04wbDn-R_TT-ornZb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923321611</pqid></control><display><type>article</type><title>Channel modeling for high-speed indoor powerline communication systems: the lattice approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Mosalaosi, Modisa ; Afullo, Thomas</creator><creatorcontrib>Mosalaosi, Modisa ; Afullo, Thomas</creatorcontrib><description>The transmission of high-frequency signals over powerlines, known as powerline communications (PLC), plays an important role in contributing toward global goals for broadband services inside the home and office. In this paper, we aim to contribute to this ideal by presenting a powerline channel modeling approach which describes a powerline network as a lattice structure. In a lattice structure, a signal propagates from one end into a network of boundaries (branches) through numerous paths characterized by different reflection/transmission properties. Due to theoretically infinite number of reflections likely to be experienced by a propagating wave, we determine the optimum number of paths required for meaningful contribution toward the overall signal level at the receiver. The propagation parameters are obtained through measurements and other model parameters are derived from deterministic powerline networks. It is observed that the notch positions in the transfer characteristics are associated with the branch lengths in the network. Short branches will result in fewer notches in a fixed bandwidth as compared to longer branches. Generally, the channel attenuation increase with network size in terms of number of branches. The proposed model compares well with experimental data.</description><identifier>ISSN: 0003-4347</identifier><identifier>EISSN: 1958-9395</identifier><identifier>DOI: 10.1007/s12243-016-0554-3</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Attenuation ; Broadband ; Circuits ; Communications Engineering ; Computer Communication Networks ; Engineering ; High speed ; Information and Communication ; Information Systems and Communication Service ; Mathematical models ; Modelling ; Networks ; Notches ; R &amp; D/Technology Policy ; Signal,Image and Speech Processing ; Wave propagation</subject><ispartof>Annales des télécommunications, 2017-08, Vol.72 (7-8), p.499-511</ispartof><rights>Institut Mines-Télécom and Springer-Verlag France 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-805a399e0bb1dced201e6275bfdb3d0d7ed188bfdc2c7bb12ff112582cc9f1b23</citedby><cites>FETCH-LOGICAL-c316t-805a399e0bb1dced201e6275bfdb3d0d7ed188bfdc2c7bb12ff112582cc9f1b23</cites><orcidid>0000-0003-3767-3607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12243-016-0554-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12243-016-0554-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mosalaosi, Modisa</creatorcontrib><creatorcontrib>Afullo, Thomas</creatorcontrib><title>Channel modeling for high-speed indoor powerline communication systems: the lattice approach</title><title>Annales des télécommunications</title><addtitle>Ann. Telecommun</addtitle><description>The transmission of high-frequency signals over powerlines, known as powerline communications (PLC), plays an important role in contributing toward global goals for broadband services inside the home and office. In this paper, we aim to contribute to this ideal by presenting a powerline channel modeling approach which describes a powerline network as a lattice structure. In a lattice structure, a signal propagates from one end into a network of boundaries (branches) through numerous paths characterized by different reflection/transmission properties. Due to theoretically infinite number of reflections likely to be experienced by a propagating wave, we determine the optimum number of paths required for meaningful contribution toward the overall signal level at the receiver. The propagation parameters are obtained through measurements and other model parameters are derived from deterministic powerline networks. It is observed that the notch positions in the transfer characteristics are associated with the branch lengths in the network. Short branches will result in fewer notches in a fixed bandwidth as compared to longer branches. Generally, the channel attenuation increase with network size in terms of number of branches. The proposed model compares well with experimental data.</description><subject>Attenuation</subject><subject>Broadband</subject><subject>Circuits</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>High speed</subject><subject>Information and Communication</subject><subject>Information Systems and Communication Service</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Networks</subject><subject>Notches</subject><subject>R &amp; D/Technology Policy</subject><subject>Signal,Image and Speech Processing</subject><subject>Wave propagation</subject><issn>0003-4347</issn><issn>1958-9395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAQx4MouK5-AG8Bz9FM0vThTRZfsOBFb0JIk-m2S9vUpIvstzfLevDiaZiZ_wN-hFwDvwXOi7sIQmSSccgZVypj8oQsoFIlq2SlTsmCcy5ZJrPinFzEuOU854VSC_K5as04Yk8H77Dvxg1tfKBtt2lZnBAd7Ubn02Xy3xjSH6n1w7AbO2vmzo807uOMQ7ync4u0N_PcWaRmmoI3tr0kZ43pI179ziX5eHp8X72w9dvz6-phzayEfGYlV0ZWFfK6BmfRCQ6Yi0LVjaul465AB2WZNitskTSiaQCEKoW1VQO1kEtyc8xNtV87jLPe-l0YU6WGSkgpIAdIKjiqbPAxBmz0FLrBhL0Grg8Q9RGiThD1AaKWySOOnpi04wbDn-R_TT-ornZb</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mosalaosi, Modisa</creator><creator>Afullo, Thomas</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3767-3607</orcidid></search><sort><creationdate>20170801</creationdate><title>Channel modeling for high-speed indoor powerline communication systems: the lattice approach</title><author>Mosalaosi, Modisa ; Afullo, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-805a399e0bb1dced201e6275bfdb3d0d7ed188bfdc2c7bb12ff112582cc9f1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attenuation</topic><topic>Broadband</topic><topic>Circuits</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>High speed</topic><topic>Information and Communication</topic><topic>Information Systems and Communication Service</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Networks</topic><topic>Notches</topic><topic>R &amp; D/Technology Policy</topic><topic>Signal,Image and Speech Processing</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mosalaosi, Modisa</creatorcontrib><creatorcontrib>Afullo, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>Annales des télécommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mosalaosi, Modisa</au><au>Afullo, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel modeling for high-speed indoor powerline communication systems: the lattice approach</atitle><jtitle>Annales des télécommunications</jtitle><stitle>Ann. Telecommun</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>72</volume><issue>7-8</issue><spage>499</spage><epage>511</epage><pages>499-511</pages><issn>0003-4347</issn><eissn>1958-9395</eissn><abstract>The transmission of high-frequency signals over powerlines, known as powerline communications (PLC), plays an important role in contributing toward global goals for broadband services inside the home and office. In this paper, we aim to contribute to this ideal by presenting a powerline channel modeling approach which describes a powerline network as a lattice structure. In a lattice structure, a signal propagates from one end into a network of boundaries (branches) through numerous paths characterized by different reflection/transmission properties. Due to theoretically infinite number of reflections likely to be experienced by a propagating wave, we determine the optimum number of paths required for meaningful contribution toward the overall signal level at the receiver. The propagation parameters are obtained through measurements and other model parameters are derived from deterministic powerline networks. It is observed that the notch positions in the transfer characteristics are associated with the branch lengths in the network. Short branches will result in fewer notches in a fixed bandwidth as compared to longer branches. Generally, the channel attenuation increase with network size in terms of number of branches. The proposed model compares well with experimental data.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12243-016-0554-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3767-3607</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-4347
ispartof Annales des télécommunications, 2017-08, Vol.72 (7-8), p.499-511
issn 0003-4347
1958-9395
language eng
recordid cdi_proquest_journals_1923321611
source Springer Nature - Complete Springer Journals
subjects Attenuation
Broadband
Circuits
Communications Engineering
Computer Communication Networks
Engineering
High speed
Information and Communication
Information Systems and Communication Service
Mathematical models
Modelling
Networks
Notches
R & D/Technology Policy
Signal,Image and Speech Processing
Wave propagation
title Channel modeling for high-speed indoor powerline communication systems: the lattice approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20modeling%20for%20high-speed%20indoor%20powerline%20communication%20systems:%20the%20lattice%20approach&rft.jtitle=Annales%20des%20t%C3%A9l%C3%A9communications&rft.au=Mosalaosi,%20Modisa&rft.date=2017-08-01&rft.volume=72&rft.issue=7-8&rft.spage=499&rft.epage=511&rft.pages=499-511&rft.issn=0003-4347&rft.eissn=1958-9395&rft_id=info:doi/10.1007/s12243-016-0554-3&rft_dat=%3Cproquest_cross%3E1923321611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923321611&rft_id=info:pmid/&rfr_iscdi=true