RETRACTED ARTICLE: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm
The complexity, scale and dynamic of data source in the human-centric computing bring great challenges to maintainers. It is problem to be solved that how to reduce manual intervention in large scale human-centric computing, such as cloud computing resource management so that system can automaticall...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2017-09, Vol.76 (17), p.17821-17838 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17838 |
---|---|
container_issue | 17 |
container_start_page | 17821 |
container_title | Multimedia tools and applications |
container_volume | 76 |
creator | Zheng, Si Zhu, GuoBin Zhang, Jie Feng, Wei |
description | The complexity, scale and dynamic of data source in the human-centric computing bring great challenges to maintainers. It is problem to be solved that how to reduce manual intervention in large scale human-centric computing, such as cloud computing resource management so that system can automatically manage according to configuration strategies. To address the problem, a resource management framework based on resource prediction and multi-objective optimization genetic algorithm resource allocation (RPMGA-RMF) was proposed. It searches for optimal load cluster as training sample based on load similarity. The neural network (NN) algorithm was used to predict resource load. Meanwhile, the model also built virtual machine migration request in accordance with obtained predicted load value. The multi-objective genetic algorithm (GA) based on hybrid group encoding algorithm was introduced for virtual machine (VM) resource management, so as to provide optimal VM migration strategy, thus achieving adaptive optimization configuration management of resource. Experimental resource based on CloudSim platform shows that the RPMGA-RMF can decrease VM migration times while reduce physical node simultaneously. The system energy consumption can be reduced and load balancing can be achieved either. |
doi_str_mv | 10.1007/s11042-015-3096-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1923215260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923215260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1611-ce28c06ad51670794f94b52f5aeeb01e08a721ec6c0b3ea60e31e32947239c1b3</originalsourceid><addsrcrecordid>eNp1kc9q3DAQxk1ooGmSB-hN0LPSGcl_1r0t200bWCgszlnI8tjrzVpyJLuhT5NXjbYbSC45adD8vvmG-ZLkK8INAhTfAyKkggNmXEKZczxLLjArJC8KgZ9iLRfAiwzwc_IlhD0A5plIL5Ln7braLlfV-idbbqu71Wb9g1XuSfsmMG2ZbvQ49X-J7eZBW27ITr43zLhhnKfedsxTcLM3xGJbdzREgLVeD_Tk_AOrdaCGOfuGjZ6a3kx9_NO2YcN8mHru6j2Z_zYdWZqigT50zvfTbrhKzlt9CHT9-l4m97fravWbb_78ulstN9xgjhgXEwsDuW4yzAsoyrQt0zoTbaaJakCChY53IJMbqCXpHEgiSVGmhZClwVpeJt9Oc0fvHmcKk9rHhW20VFgKKTATOUQKT5TxLgRPrRp9P2j_TyGoYw7qlIOKOahjDgqjRpw0IbK2I_9u8oeiF2PRjM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923215260</pqid></control><display><type>article</type><title>RETRACTED ARTICLE: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm</title><source>SpringerLink Journals</source><creator>Zheng, Si ; Zhu, GuoBin ; Zhang, Jie ; Feng, Wei</creator><creatorcontrib>Zheng, Si ; Zhu, GuoBin ; Zhang, Jie ; Feng, Wei</creatorcontrib><description>The complexity, scale and dynamic of data source in the human-centric computing bring great challenges to maintainers. It is problem to be solved that how to reduce manual intervention in large scale human-centric computing, such as cloud computing resource management so that system can automatically manage according to configuration strategies. To address the problem, a resource management framework based on resource prediction and multi-objective optimization genetic algorithm resource allocation (RPMGA-RMF) was proposed. It searches for optimal load cluster as training sample based on load similarity. The neural network (NN) algorithm was used to predict resource load. Meanwhile, the model also built virtual machine migration request in accordance with obtained predicted load value. The multi-objective genetic algorithm (GA) based on hybrid group encoding algorithm was introduced for virtual machine (VM) resource management, so as to provide optimal VM migration strategy, thus achieving adaptive optimization configuration management of resource. Experimental resource based on CloudSim platform shows that the RPMGA-RMF can decrease VM migration times while reduce physical node simultaneously. The system energy consumption can be reduced and load balancing can be achieved either.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-015-3096-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Complexity ; Computer Communication Networks ; Computer Science ; Configuration management ; Construction equipment ; Data Structures and Information Theory ; Energy consumption ; Genetic algorithms ; Human-computer interaction ; Load balancing ; Migration ; Multimedia Information Systems ; Multiple objective analysis ; Neural networks ; Optimization ; Predictions ; Resource allocation ; Resource management ; Similarity ; Special Purpose and Application-Based Systems ; Virtual environments</subject><ispartof>Multimedia tools and applications, 2017-09, Vol.76 (17), p.17821-17838</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1611-ce28c06ad51670794f94b52f5aeeb01e08a721ec6c0b3ea60e31e32947239c1b3</citedby><cites>FETCH-LOGICAL-c1611-ce28c06ad51670794f94b52f5aeeb01e08a721ec6c0b3ea60e31e32947239c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-015-3096-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-015-3096-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zheng, Si</creatorcontrib><creatorcontrib>Zhu, GuoBin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><title>RETRACTED ARTICLE: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The complexity, scale and dynamic of data source in the human-centric computing bring great challenges to maintainers. It is problem to be solved that how to reduce manual intervention in large scale human-centric computing, such as cloud computing resource management so that system can automatically manage according to configuration strategies. To address the problem, a resource management framework based on resource prediction and multi-objective optimization genetic algorithm resource allocation (RPMGA-RMF) was proposed. It searches for optimal load cluster as training sample based on load similarity. The neural network (NN) algorithm was used to predict resource load. Meanwhile, the model also built virtual machine migration request in accordance with obtained predicted load value. The multi-objective genetic algorithm (GA) based on hybrid group encoding algorithm was introduced for virtual machine (VM) resource management, so as to provide optimal VM migration strategy, thus achieving adaptive optimization configuration management of resource. Experimental resource based on CloudSim platform shows that the RPMGA-RMF can decrease VM migration times while reduce physical node simultaneously. The system energy consumption can be reduced and load balancing can be achieved either.</description><subject>Cloud computing</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Configuration management</subject><subject>Construction equipment</subject><subject>Data Structures and Information Theory</subject><subject>Energy consumption</subject><subject>Genetic algorithms</subject><subject>Human-computer interaction</subject><subject>Load balancing</subject><subject>Migration</subject><subject>Multimedia Information Systems</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Predictions</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Similarity</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Virtual environments</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc9q3DAQxk1ooGmSB-hN0LPSGcl_1r0t200bWCgszlnI8tjrzVpyJLuhT5NXjbYbSC45adD8vvmG-ZLkK8INAhTfAyKkggNmXEKZczxLLjArJC8KgZ9iLRfAiwzwc_IlhD0A5plIL5Ln7braLlfV-idbbqu71Wb9g1XuSfsmMG2ZbvQ49X-J7eZBW27ITr43zLhhnKfedsxTcLM3xGJbdzREgLVeD_Tk_AOrdaCGOfuGjZ6a3kx9_NO2YcN8mHru6j2Z_zYdWZqigT50zvfTbrhKzlt9CHT9-l4m97fravWbb_78ulstN9xgjhgXEwsDuW4yzAsoyrQt0zoTbaaJakCChY53IJMbqCXpHEgiSVGmhZClwVpeJt9Oc0fvHmcKk9rHhW20VFgKKTATOUQKT5TxLgRPrRp9P2j_TyGoYw7qlIOKOahjDgqjRpw0IbK2I_9u8oeiF2PRjM8</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Zheng, Si</creator><creator>Zhu, GuoBin</creator><creator>Zhang, Jie</creator><creator>Feng, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170901</creationdate><title>RETRACTED ARTICLE: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm</title><author>Zheng, Si ; Zhu, GuoBin ; Zhang, Jie ; Feng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1611-ce28c06ad51670794f94b52f5aeeb01e08a721ec6c0b3ea60e31e32947239c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cloud computing</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Configuration management</topic><topic>Construction equipment</topic><topic>Data Structures and Information Theory</topic><topic>Energy consumption</topic><topic>Genetic algorithms</topic><topic>Human-computer interaction</topic><topic>Load balancing</topic><topic>Migration</topic><topic>Multimedia Information Systems</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Predictions</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Similarity</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Si</creatorcontrib><creatorcontrib>Zhu, GuoBin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Feng, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Si</au><au>Zhu, GuoBin</au><au>Zhang, Jie</au><au>Feng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETRACTED ARTICLE: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>76</volume><issue>17</issue><spage>17821</spage><epage>17838</epage><pages>17821-17838</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The complexity, scale and dynamic of data source in the human-centric computing bring great challenges to maintainers. It is problem to be solved that how to reduce manual intervention in large scale human-centric computing, such as cloud computing resource management so that system can automatically manage according to configuration strategies. To address the problem, a resource management framework based on resource prediction and multi-objective optimization genetic algorithm resource allocation (RPMGA-RMF) was proposed. It searches for optimal load cluster as training sample based on load similarity. The neural network (NN) algorithm was used to predict resource load. Meanwhile, the model also built virtual machine migration request in accordance with obtained predicted load value. The multi-objective genetic algorithm (GA) based on hybrid group encoding algorithm was introduced for virtual machine (VM) resource management, so as to provide optimal VM migration strategy, thus achieving adaptive optimization configuration management of resource. Experimental resource based on CloudSim platform shows that the RPMGA-RMF can decrease VM migration times while reduce physical node simultaneously. The system energy consumption can be reduced and load balancing can be achieved either.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-015-3096-1</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2017-09, Vol.76 (17), p.17821-17838 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_1923215260 |
source | SpringerLink Journals |
subjects | Cloud computing Complexity Computer Communication Networks Computer Science Configuration management Construction equipment Data Structures and Information Theory Energy consumption Genetic algorithms Human-computer interaction Load balancing Migration Multimedia Information Systems Multiple objective analysis Neural networks Optimization Predictions Resource allocation Resource management Similarity Special Purpose and Application-Based Systems Virtual environments |
title | RETRACTED ARTICLE: Towards an adaptive human-centric computing resource management framework based on resource prediction and multi-objective genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETRACTED%20ARTICLE:%20Towards%20an%20adaptive%20human-centric%20computing%20resource%20management%20framework%20based%20on%20resource%20prediction%20and%20multi-objective%20genetic%20algorithm&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zheng,%20Si&rft.date=2017-09-01&rft.volume=76&rft.issue=17&rft.spage=17821&rft.epage=17838&rft.pages=17821-17838&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-015-3096-1&rft_dat=%3Cproquest_cross%3E1923215260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923215260&rft_id=info:pmid/&rfr_iscdi=true |