Using basic metrics to analyze high-resolution temperature data in the subsurface
Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resol...
Gespeichert in:
Veröffentlicht in: | Hydrogeology journal 2017-08, Vol.25 (5), p.1501-1508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1508 |
---|---|
container_issue | 5 |
container_start_page | 1501 |
container_title | Hydrogeology journal |
container_volume | 25 |
creator | Shanafield, Margaret McCallum, James L. Cook, Peter G. Noorduijn, Saskia |
description | Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning. |
doi_str_mv | 10.1007/s10040-017-1578-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1922826510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1922826510</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-10a0bd1c3ae1e8e28ccba3aa3b183fd56251753b1782b38e9bc25208c3219fc43</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTQ3mTSZpRRfIIhg1yFJ77RT2pmaZBb115s6Lty4uS_OOVw-Qq6B3wLn-i6VWnHGQTNQ2jB-QiZQSVUuSp_-zMAE6OqcXKS04UUNWk7I-yK13Yp6l9pAd5hjGxLNPXWd2x6-kK7b1ZpFTP12yG3f0Yy7PUaXh4h06bKjbbmtkabBpyE2LuAlOWvcNuHVb5-SxePDx_yZvb49vczvX5mTss4MuON-CUE6BDQoTAjeSeekByObpZoJBVqVTRvhpcHaB6EEN0EKqJtQySm5GXP3sf8cMGW76YdY3k4WaiGMmCngRQWjKsQ-pYiN3cd25-LBArdHcnYkZws5eyRnjx4xelLRdiuMf5L_NX0D0VRw-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1922826510</pqid></control><display><type>article</type><title>Using basic metrics to analyze high-resolution temperature data in the subsurface</title><source>Springer Nature - Complete Springer Journals</source><creator>Shanafield, Margaret ; McCallum, James L. ; Cook, Peter G. ; Noorduijn, Saskia</creator><creatorcontrib>Shanafield, Margaret ; McCallum, James L. ; Cook, Peter G. ; Noorduijn, Saskia</creatorcontrib><description>Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-017-1578-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advection ; Aquatic Pollution ; Artificial wetlands ; Basins ; Conduction ; Conduction model ; Data analysis ; Data processing ; Earth and Environmental Science ; Earth Sciences ; Fiber optics ; Geology ; Geophysics/Geodesy ; Groundwater flow ; High resolution ; Hydrogeology ; Hydrology/Water Resources ; Infiltration ; Information dissemination ; Mean temperatures ; Metric system ; Optical fibers ; Recharge basins ; Resolution ; Spatial variations ; Subsurface flow ; Surface chemistry ; Technical Note ; Temperature ; Temperature changes ; Temperature data ; Temperature effects ; Temporal variations ; Three dimensional models ; Time series ; Waste Water Technology ; Water delivery ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution ; Wetlands</subject><ispartof>Hydrogeology journal, 2017-08, Vol.25 (5), p.1501-1508</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Hydrogeology Journal is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-10a0bd1c3ae1e8e28ccba3aa3b183fd56251753b1782b38e9bc25208c3219fc43</citedby><cites>FETCH-LOGICAL-a339t-10a0bd1c3ae1e8e28ccba3aa3b183fd56251753b1782b38e9bc25208c3219fc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-017-1578-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-017-1578-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shanafield, Margaret</creatorcontrib><creatorcontrib>McCallum, James L.</creatorcontrib><creatorcontrib>Cook, Peter G.</creatorcontrib><creatorcontrib>Noorduijn, Saskia</creatorcontrib><title>Using basic metrics to analyze high-resolution temperature data in the subsurface</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.</description><subject>Advection</subject><subject>Aquatic Pollution</subject><subject>Artificial wetlands</subject><subject>Basins</subject><subject>Conduction</subject><subject>Conduction model</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fiber optics</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Groundwater flow</subject><subject>High resolution</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Infiltration</subject><subject>Information dissemination</subject><subject>Mean temperatures</subject><subject>Metric system</subject><subject>Optical fibers</subject><subject>Recharge basins</subject><subject>Resolution</subject><subject>Spatial variations</subject><subject>Subsurface flow</subject><subject>Surface chemistry</subject><subject>Technical Note</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Temporal variations</subject><subject>Three dimensional models</subject><subject>Time series</subject><subject>Waste Water Technology</subject><subject>Water delivery</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><subject>Wetlands</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTQ3mTSZpRRfIIhg1yFJ77RT2pmaZBb115s6Lty4uS_OOVw-Qq6B3wLn-i6VWnHGQTNQ2jB-QiZQSVUuSp_-zMAE6OqcXKS04UUNWk7I-yK13Yp6l9pAd5hjGxLNPXWd2x6-kK7b1ZpFTP12yG3f0Yy7PUaXh4h06bKjbbmtkabBpyE2LuAlOWvcNuHVb5-SxePDx_yZvb49vczvX5mTss4MuON-CUE6BDQoTAjeSeekByObpZoJBVqVTRvhpcHaB6EEN0EKqJtQySm5GXP3sf8cMGW76YdY3k4WaiGMmCngRQWjKsQ-pYiN3cd25-LBArdHcnYkZws5eyRnjx4xelLRdiuMf5L_NX0D0VRw-g</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Shanafield, Margaret</creator><creator>McCallum, James L.</creator><creator>Cook, Peter G.</creator><creator>Noorduijn, Saskia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20170801</creationdate><title>Using basic metrics to analyze high-resolution temperature data in the subsurface</title><author>Shanafield, Margaret ; McCallum, James L. ; Cook, Peter G. ; Noorduijn, Saskia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-10a0bd1c3ae1e8e28ccba3aa3b183fd56251753b1782b38e9bc25208c3219fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advection</topic><topic>Aquatic Pollution</topic><topic>Artificial wetlands</topic><topic>Basins</topic><topic>Conduction</topic><topic>Conduction model</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fiber optics</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Groundwater flow</topic><topic>High resolution</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Infiltration</topic><topic>Information dissemination</topic><topic>Mean temperatures</topic><topic>Metric system</topic><topic>Optical fibers</topic><topic>Recharge basins</topic><topic>Resolution</topic><topic>Spatial variations</topic><topic>Subsurface flow</topic><topic>Surface chemistry</topic><topic>Technical Note</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Temporal variations</topic><topic>Three dimensional models</topic><topic>Time series</topic><topic>Waste Water Technology</topic><topic>Water delivery</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanafield, Margaret</creatorcontrib><creatorcontrib>McCallum, James L.</creatorcontrib><creatorcontrib>Cook, Peter G.</creatorcontrib><creatorcontrib>Noorduijn, Saskia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanafield, Margaret</au><au>McCallum, James L.</au><au>Cook, Peter G.</au><au>Noorduijn, Saskia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using basic metrics to analyze high-resolution temperature data in the subsurface</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1501</spage><epage>1508</epage><pages>1501-1508</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25–0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-017-1578-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-2174 |
ispartof | Hydrogeology journal, 2017-08, Vol.25 (5), p.1501-1508 |
issn | 1431-2174 1435-0157 |
language | eng |
recordid | cdi_proquest_journals_1922826510 |
source | Springer Nature - Complete Springer Journals |
subjects | Advection Aquatic Pollution Artificial wetlands Basins Conduction Conduction model Data analysis Data processing Earth and Environmental Science Earth Sciences Fiber optics Geology Geophysics/Geodesy Groundwater flow High resolution Hydrogeology Hydrology/Water Resources Infiltration Information dissemination Mean temperatures Metric system Optical fibers Recharge basins Resolution Spatial variations Subsurface flow Surface chemistry Technical Note Temperature Temperature changes Temperature data Temperature effects Temporal variations Three dimensional models Time series Waste Water Technology Water delivery Water Management Water Pollution Control Water Quality/Water Pollution Wetlands |
title | Using basic metrics to analyze high-resolution temperature data in the subsurface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20basic%20metrics%20to%20analyze%20high-resolution%20temperature%20data%20in%20the%20subsurface&rft.jtitle=Hydrogeology%20journal&rft.au=Shanafield,%20Margaret&rft.date=2017-08-01&rft.volume=25&rft.issue=5&rft.spage=1501&rft.epage=1508&rft.pages=1501-1508&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-017-1578-0&rft_dat=%3Cproquest_cross%3E1922826510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1922826510&rft_id=info:pmid/&rfr_iscdi=true |