Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm

This work introduces the symbiotic organisms search (SOS) evolutionary algorithm to the optimization of reservoir operation. Unlike the genetic algorithm (GA) and the water cycle algorithm (WCA) the SOS does not require specification of algorithmic parameters. The solution effectiveness of the GA, S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydroinformatics 2017-07, Vol.19 (4), p.507-521
Hauptverfasser: Bozorg-Haddad, Omid, Azarnivand, Ali, Hosseini-Moghari, Seyed-Mohammad, Loáiciga, Hugo A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 4
container_start_page 507
container_title Journal of hydroinformatics
container_volume 19
creator Bozorg-Haddad, Omid
Azarnivand, Ali
Hosseini-Moghari, Seyed-Mohammad
Loáiciga, Hugo A.
description This work introduces the symbiotic organisms search (SOS) evolutionary algorithm to the optimization of reservoir operation. Unlike the genetic algorithm (GA) and the water cycle algorithm (WCA) the SOS does not require specification of algorithmic parameters. The solution effectiveness of the GA, SOS, and WCA was assessed with a single-reservoir and a multi-reservoir optimization problem. The SOS proved superior to the GA and the WCA in optimizing the objective functions of the two reservoir systems. In the single reservoir problem, with global optimum value of 1.213, the SOS, GA, and WCA determined 1.240, 1.535, and 1.262 as the optimal solutions, respectively. The superiority of SOS was also verified in a hypothetical four-reservoir optimization problem. In this case, the GA, WCA, and SOS in their best performance among 10 solution runs converged to 97.46%, 99.56%, and 99.86% of the global optimal solution. Besides its better performance in approximating optima, the SOS avoided premature convergence and produced lower standard deviation about optima.
doi_str_mv 10.2166/hydro.2017.085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1921214841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921214841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-9c456cb4d9900dbd33b90c8ada21f7131f716325ee2f95eeeeaaf259d09ab7e13</originalsourceid><addsrcrecordid>eNotkL1PwzAQxS0EEqWwMltigSHBZzsfHlHFl1QpQ2FhsZzEaVw1dbBdUP97nJbl3enu6Z7uh9AtkJRCnj_2h9bZlBIoUlJmZ2gGPM8SKBg_P_Y8KYDDJbryfkMIBVbCDH1VYzCD2mI7aqeCsTtsO-y01-7HGof9wQc9ePxrQo9Dr-NgqI0NpsHWrdXO-Lj0Wrmmx_eravWA1XZtXXQP1-iiU1uvb_7rHH2-PH8s3pJl9fq-eFomDSNFSETDs7ypeSsEIW3dMlYL0pSqVRS6AtgkOaOZ1rQTUbVWqqOZaIlQdaGBzdHd6e7o7Pde-yA3du92MVKCoECBl3xypSdX46z3TndydPFxd5BA5MRPHvnJiZ-M_NgfoKVl0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921214841</pqid></control><display><type>article</type><title>Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bozorg-Haddad, Omid ; Azarnivand, Ali ; Hosseini-Moghari, Seyed-Mohammad ; Loáiciga, Hugo A.</creator><creatorcontrib>Bozorg-Haddad, Omid ; Azarnivand, Ali ; Hosseini-Moghari, Seyed-Mohammad ; Loáiciga, Hugo A.</creatorcontrib><description>This work introduces the symbiotic organisms search (SOS) evolutionary algorithm to the optimization of reservoir operation. Unlike the genetic algorithm (GA) and the water cycle algorithm (WCA) the SOS does not require specification of algorithmic parameters. The solution effectiveness of the GA, SOS, and WCA was assessed with a single-reservoir and a multi-reservoir optimization problem. The SOS proved superior to the GA and the WCA in optimizing the objective functions of the two reservoir systems. In the single reservoir problem, with global optimum value of 1.213, the SOS, GA, and WCA determined 1.240, 1.535, and 1.262 as the optimal solutions, respectively. The superiority of SOS was also verified in a hypothetical four-reservoir optimization problem. In this case, the GA, WCA, and SOS in their best performance among 10 solution runs converged to 97.46%, 99.56%, and 99.86% of the global optimal solution. Besides its better performance in approximating optima, the SOS avoided premature convergence and produced lower standard deviation about optima.</description><identifier>ISSN: 1464-7141</identifier><identifier>EISSN: 1465-1734</identifier><identifier>DOI: 10.2166/hydro.2017.085</identifier><language>eng</language><publisher>London: IWA Publishing</publisher><subject>Algorithms ; Chromosomes ; Convergence ; Dynamic programming ; Evolutionary algorithms ; Genetic algorithms ; Hydrologic cycle ; Hydrological cycle ; Linear programming ; Mathematical models ; Mutation ; Optimization ; Optimization algorithms ; Organisms ; Population ; Quality ; Reservoir operation ; Solutions ; Symbionts ; Water resources</subject><ispartof>Journal of hydroinformatics, 2017-07, Vol.19 (4), p.507-521</ispartof><rights>Copyright IWA Publishing Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-9c456cb4d9900dbd33b90c8ada21f7131f716325ee2f95eeeeaaf259d09ab7e13</citedby><cites>FETCH-LOGICAL-c307t-9c456cb4d9900dbd33b90c8ada21f7131f716325ee2f95eeeeaaf259d09ab7e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bozorg-Haddad, Omid</creatorcontrib><creatorcontrib>Azarnivand, Ali</creatorcontrib><creatorcontrib>Hosseini-Moghari, Seyed-Mohammad</creatorcontrib><creatorcontrib>Loáiciga, Hugo A.</creatorcontrib><title>Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm</title><title>Journal of hydroinformatics</title><description>This work introduces the symbiotic organisms search (SOS) evolutionary algorithm to the optimization of reservoir operation. Unlike the genetic algorithm (GA) and the water cycle algorithm (WCA) the SOS does not require specification of algorithmic parameters. The solution effectiveness of the GA, SOS, and WCA was assessed with a single-reservoir and a multi-reservoir optimization problem. The SOS proved superior to the GA and the WCA in optimizing the objective functions of the two reservoir systems. In the single reservoir problem, with global optimum value of 1.213, the SOS, GA, and WCA determined 1.240, 1.535, and 1.262 as the optimal solutions, respectively. The superiority of SOS was also verified in a hypothetical four-reservoir optimization problem. In this case, the GA, WCA, and SOS in their best performance among 10 solution runs converged to 97.46%, 99.56%, and 99.86% of the global optimal solution. Besides its better performance in approximating optima, the SOS avoided premature convergence and produced lower standard deviation about optima.</description><subject>Algorithms</subject><subject>Chromosomes</subject><subject>Convergence</subject><subject>Dynamic programming</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Organisms</subject><subject>Population</subject><subject>Quality</subject><subject>Reservoir operation</subject><subject>Solutions</subject><subject>Symbionts</subject><subject>Water resources</subject><issn>1464-7141</issn><issn>1465-1734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkL1PwzAQxS0EEqWwMltigSHBZzsfHlHFl1QpQ2FhsZzEaVw1dbBdUP97nJbl3enu6Z7uh9AtkJRCnj_2h9bZlBIoUlJmZ2gGPM8SKBg_P_Y8KYDDJbryfkMIBVbCDH1VYzCD2mI7aqeCsTtsO-y01-7HGof9wQc9ePxrQo9Dr-NgqI0NpsHWrdXO-Lj0Wrmmx_eravWA1XZtXXQP1-iiU1uvb_7rHH2-PH8s3pJl9fq-eFomDSNFSETDs7ypeSsEIW3dMlYL0pSqVRS6AtgkOaOZ1rQTUbVWqqOZaIlQdaGBzdHd6e7o7Pde-yA3du92MVKCoECBl3xypSdX46z3TndydPFxd5BA5MRPHvnJiZ-M_NgfoKVl0Q</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bozorg-Haddad, Omid</creator><creator>Azarnivand, Ali</creator><creator>Hosseini-Moghari, Seyed-Mohammad</creator><creator>Loáiciga, Hugo A.</creator><general>IWA Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20170701</creationdate><title>Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm</title><author>Bozorg-Haddad, Omid ; Azarnivand, Ali ; Hosseini-Moghari, Seyed-Mohammad ; Loáiciga, Hugo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-9c456cb4d9900dbd33b90c8ada21f7131f716325ee2f95eeeeaaf259d09ab7e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chromosomes</topic><topic>Convergence</topic><topic>Dynamic programming</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Organisms</topic><topic>Population</topic><topic>Quality</topic><topic>Reservoir operation</topic><topic>Solutions</topic><topic>Symbionts</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozorg-Haddad, Omid</creatorcontrib><creatorcontrib>Azarnivand, Ali</creatorcontrib><creatorcontrib>Hosseini-Moghari, Seyed-Mohammad</creatorcontrib><creatorcontrib>Loáiciga, Hugo A.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Journal of hydroinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozorg-Haddad, Omid</au><au>Azarnivand, Ali</au><au>Hosseini-Moghari, Seyed-Mohammad</au><au>Loáiciga, Hugo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm</atitle><jtitle>Journal of hydroinformatics</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>19</volume><issue>4</issue><spage>507</spage><epage>521</epage><pages>507-521</pages><issn>1464-7141</issn><eissn>1465-1734</eissn><abstract>This work introduces the symbiotic organisms search (SOS) evolutionary algorithm to the optimization of reservoir operation. Unlike the genetic algorithm (GA) and the water cycle algorithm (WCA) the SOS does not require specification of algorithmic parameters. The solution effectiveness of the GA, SOS, and WCA was assessed with a single-reservoir and a multi-reservoir optimization problem. The SOS proved superior to the GA and the WCA in optimizing the objective functions of the two reservoir systems. In the single reservoir problem, with global optimum value of 1.213, the SOS, GA, and WCA determined 1.240, 1.535, and 1.262 as the optimal solutions, respectively. The superiority of SOS was also verified in a hypothetical four-reservoir optimization problem. In this case, the GA, WCA, and SOS in their best performance among 10 solution runs converged to 97.46%, 99.56%, and 99.86% of the global optimal solution. Besides its better performance in approximating optima, the SOS avoided premature convergence and produced lower standard deviation about optima.</abstract><cop>London</cop><pub>IWA Publishing</pub><doi>10.2166/hydro.2017.085</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1464-7141
ispartof Journal of hydroinformatics, 2017-07, Vol.19 (4), p.507-521
issn 1464-7141
1465-1734
language eng
recordid cdi_proquest_journals_1921214841
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Chromosomes
Convergence
Dynamic programming
Evolutionary algorithms
Genetic algorithms
Hydrologic cycle
Hydrological cycle
Linear programming
Mathematical models
Mutation
Optimization
Optimization algorithms
Organisms
Population
Quality
Reservoir operation
Solutions
Symbionts
Water resources
title Optimal operation of reservoir systems with the symbiotic organisms search (SOS) algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20operation%20of%20reservoir%20systems%20with%20the%20symbiotic%20organisms%20search%20(SOS)%20algorithm&rft.jtitle=Journal%20of%20hydroinformatics&rft.au=Bozorg-Haddad,%20Omid&rft.date=2017-07-01&rft.volume=19&rft.issue=4&rft.spage=507&rft.epage=521&rft.pages=507-521&rft.issn=1464-7141&rft.eissn=1465-1734&rft_id=info:doi/10.2166/hydro.2017.085&rft_dat=%3Cproquest_cross%3E1921214841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1921214841&rft_id=info:pmid/&rfr_iscdi=true