Enhancement of dielectrophoresis using fractal gold nanostructured electrodes

Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern‐leaf type self‐similarity. A particle track...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2017-06, Vol.38 (11), p.1458-1465
Hauptverfasser: Koklu, Anil, Sabuncu, Ahmet C., Beskok, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1465
container_issue 11
container_start_page 1458
container_title Electrophoresis
container_volume 38
creator Koklu, Anil
Sabuncu, Ahmet C.
Beskok, Ali
description Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern‐leaf type self‐similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high‐conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response.
doi_str_mv 10.1002/elps.201600456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1920473711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920473711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4714-a17a16a4c48b0ca569aeebc6192e44e258545c356fe46cafc05bc608f64c7bed3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQQBdRbK1ePUrAc-rsZnaTHEXqB1QU1POy2UzalDRbdxOk_96U1l49zWHevIHH2DWHKQcQd9RswlQAVwAo1QkbcylELFSWnLIx8DSJIUvkiF2EsIKByRHP2UhkPIGc45i9ztqlaS2tqe0iV0VlTQ3ZzrvN0nkKdYj6ULeLqPLGdqaJFq4po9a0LnS-t13vqYwOFyWFS3ZWmSbQ1WFO2Nfj7PPhOZ6_Pb083M9jiynH2PDUcGXQYlaANVLlhqiwiueCEEnITKK0iVQVobKmsiCHLWSVQpsWVCYTdrv3brz77il0euV63w4v9eAATJOU84Ga7inrXQieKr3x9dr4reagd_X0rp4-1hsObg7avlhTecT_cg0A7oGfuqHtPzo9m79_KA6Y_AKuaHxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920473711</pqid></control><display><type>article</type><title>Enhancement of dielectrophoresis using fractal gold nanostructured electrodes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Koklu, Anil ; Sabuncu, Ahmet C. ; Beskok, Ali</creator><creatorcontrib>Koklu, Anil ; Sabuncu, Ahmet C. ; Beskok, Ali</creatorcontrib><description>Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern‐leaf type self‐similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high‐conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600456</identifier><identifier>PMID: 28130914</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Baking yeast ; Colloids ; Dielectric spectroscopy ; Dielectrophoresis ; Electric Impedance ; Electrical impedance ; Electrical resistivity ; Electricity ; Electrode polarization ; Electrodes ; Electrolytic cells ; Electrophoresis - instrumentation ; Electrophoresis - methods ; Fractal gold nanostructures ; Fractals ; Gold ; Gold Colloid ; Impedance spectroscopy ; Metal Nanoparticles ; Microelectrodes ; Motion ; Nanostructures - chemistry ; Particle Size ; Particle tracking ; Saccharomyces cerevisiae ; Self-similarity ; Similarity ; Spectroscopic analysis ; Surface Properties ; Topology ; Yeast</subject><ispartof>Electrophoresis, 2017-06, Vol.38 (11), p.1458-1465</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4714-a17a16a4c48b0ca569aeebc6192e44e258545c356fe46cafc05bc608f64c7bed3</citedby><cites>FETCH-LOGICAL-c4714-a17a16a4c48b0ca569aeebc6192e44e258545c356fe46cafc05bc608f64c7bed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201600456$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201600456$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28130914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koklu, Anil</creatorcontrib><creatorcontrib>Sabuncu, Ahmet C.</creatorcontrib><creatorcontrib>Beskok, Ali</creatorcontrib><title>Enhancement of dielectrophoresis using fractal gold nanostructured electrodes</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern‐leaf type self‐similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high‐conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response.</description><subject>Algorithms</subject><subject>Baking yeast</subject><subject>Colloids</subject><subject>Dielectric spectroscopy</subject><subject>Dielectrophoresis</subject><subject>Electric Impedance</subject><subject>Electrical impedance</subject><subject>Electrical resistivity</subject><subject>Electricity</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Electrophoresis - instrumentation</subject><subject>Electrophoresis - methods</subject><subject>Fractal gold nanostructures</subject><subject>Fractals</subject><subject>Gold</subject><subject>Gold Colloid</subject><subject>Impedance spectroscopy</subject><subject>Metal Nanoparticles</subject><subject>Microelectrodes</subject><subject>Motion</subject><subject>Nanostructures - chemistry</subject><subject>Particle Size</subject><subject>Particle tracking</subject><subject>Saccharomyces cerevisiae</subject><subject>Self-similarity</subject><subject>Similarity</subject><subject>Spectroscopic analysis</subject><subject>Surface Properties</subject><subject>Topology</subject><subject>Yeast</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQQBdRbK1ePUrAc-rsZnaTHEXqB1QU1POy2UzalDRbdxOk_96U1l49zWHevIHH2DWHKQcQd9RswlQAVwAo1QkbcylELFSWnLIx8DSJIUvkiF2EsIKByRHP2UhkPIGc45i9ztqlaS2tqe0iV0VlTQ3ZzrvN0nkKdYj6ULeLqPLGdqaJFq4po9a0LnS-t13vqYwOFyWFS3ZWmSbQ1WFO2Nfj7PPhOZ6_Pb083M9jiynH2PDUcGXQYlaANVLlhqiwiueCEEnITKK0iVQVobKmsiCHLWSVQpsWVCYTdrv3brz77il0euV63w4v9eAATJOU84Ga7inrXQieKr3x9dr4reagd_X0rp4-1hsObg7avlhTecT_cg0A7oGfuqHtPzo9m79_KA6Y_AKuaHxn</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Koklu, Anil</creator><creator>Sabuncu, Ahmet C.</creator><creator>Beskok, Ali</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Enhancement of dielectrophoresis using fractal gold nanostructured electrodes</title><author>Koklu, Anil ; Sabuncu, Ahmet C. ; Beskok, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4714-a17a16a4c48b0ca569aeebc6192e44e258545c356fe46cafc05bc608f64c7bed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Baking yeast</topic><topic>Colloids</topic><topic>Dielectric spectroscopy</topic><topic>Dielectrophoresis</topic><topic>Electric Impedance</topic><topic>Electrical impedance</topic><topic>Electrical resistivity</topic><topic>Electricity</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Electrophoresis - instrumentation</topic><topic>Electrophoresis - methods</topic><topic>Fractal gold nanostructures</topic><topic>Fractals</topic><topic>Gold</topic><topic>Gold Colloid</topic><topic>Impedance spectroscopy</topic><topic>Metal Nanoparticles</topic><topic>Microelectrodes</topic><topic>Motion</topic><topic>Nanostructures - chemistry</topic><topic>Particle Size</topic><topic>Particle tracking</topic><topic>Saccharomyces cerevisiae</topic><topic>Self-similarity</topic><topic>Similarity</topic><topic>Spectroscopic analysis</topic><topic>Surface Properties</topic><topic>Topology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koklu, Anil</creatorcontrib><creatorcontrib>Sabuncu, Ahmet C.</creatorcontrib><creatorcontrib>Beskok, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koklu, Anil</au><au>Sabuncu, Ahmet C.</au><au>Beskok, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of dielectrophoresis using fractal gold nanostructured electrodes</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-06</date><risdate>2017</risdate><volume>38</volume><issue>11</issue><spage>1458</spage><epage>1465</epage><pages>1458-1465</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Dielectrophoretic motions of Saccharomyces cerevisiae (yeast) cells and colloidal gold are investigated using electrochemically modified electrodes exhibiting fractal topology. Electrodeposition of gold on electrodes generated repeated patterns with a fern‐leaf type self‐similarity. A particle tracking algorithm is used to extract dielectrophoretic particle velocities using fractal and planar electrodes in two different medium conductivities. The results show increased dielectrophoretic force when using fractal electrodes. Strong negative dielectrophoresis of yeast cells in high‐conductivity media (1.5 S/m) is observed using fractal electrodes, while no significant motion is present using planar electrodes. Electrical impedance at the electrode/electrolyte interface is measured using impedance spectroscopy technique. Stronger electrode polarization (EP) effects are reported for planar electrodes. Decreased EP in fractal electrodes is considered as a reason for enhanced dielectrophoretic response.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28130914</pmid><doi>10.1002/elps.201600456</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2017-06, Vol.38 (11), p.1458-1465
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_journals_1920473711
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Baking yeast
Colloids
Dielectric spectroscopy
Dielectrophoresis
Electric Impedance
Electrical impedance
Electrical resistivity
Electricity
Electrode polarization
Electrodes
Electrolytic cells
Electrophoresis - instrumentation
Electrophoresis - methods
Fractal gold nanostructures
Fractals
Gold
Gold Colloid
Impedance spectroscopy
Metal Nanoparticles
Microelectrodes
Motion
Nanostructures - chemistry
Particle Size
Particle tracking
Saccharomyces cerevisiae
Self-similarity
Similarity
Spectroscopic analysis
Surface Properties
Topology
Yeast
title Enhancement of dielectrophoresis using fractal gold nanostructured electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20dielectrophoresis%20using%20fractal%20gold%20nanostructured%20electrodes&rft.jtitle=Electrophoresis&rft.au=Koklu,%20Anil&rft.date=2017-06&rft.volume=38&rft.issue=11&rft.spage=1458&rft.epage=1465&rft.pages=1458-1465&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600456&rft_dat=%3Cproquest_cross%3E1920473711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920473711&rft_id=info:pmid/28130914&rfr_iscdi=true