Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices
Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafn...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-06, Vol.27 (21), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Yu, Hyeonggeun Chung, Ching‐Chang Shewmon, Nate Ho, Szuheng Carpenter, Joshua H. Larrabee, Ryan Sun, Tianlei Jones, Jacob L. Ade, Harald O'Connor, Brendan T. So, Franky |
description | Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years.
Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years. |
doi_str_mv | 10.1002/adfm.201700461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1920432151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920432151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujiYhePW_iebFf23aPBFzEgF4w8dYs3Vkt2d1iCyj_vSUYPHqaN5n3m8k8hG4JHhCM6X1Z1e2AYiIx5oKcoR4RRKQMU3V-0uTtEl2FsMLRJhnvoaeigW-7bCCZds6_l501SQHeO2jAbHzsFh-2SwrbtCGpnU-eXbdzTbmxEZlD6_w-GcPOGgjX6KIumwA3v7WPXouHxegxnb1MpqPhLDVMMZIyIUtOMqkEpZmoFFY8B46VqsolzihXwHm1VBWIqjYszkwueRRSQpaz3LA-ujvuXXv3uYWw0Su39V08qUlOMWeUZCS6BkeX8S4ED7Vee9uWfq8J1oe89CEvfcorAvkR-Iqv7f9x6-G4mP-xP5K_bZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920432151</pqid></control><display><type>article</type><title>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Hyeonggeun ; Chung, Ching‐Chang ; Shewmon, Nate ; Ho, Szuheng ; Carpenter, Joshua H. ; Larrabee, Ryan ; Sun, Tianlei ; Jones, Jacob L. ; Ade, Harald ; O'Connor, Brendan T. ; So, Franky</creator><creatorcontrib>Yu, Hyeonggeun ; Chung, Ching‐Chang ; Shewmon, Nate ; Ho, Szuheng ; Carpenter, Joshua H. ; Larrabee, Ryan ; Sun, Tianlei ; Jones, Jacob L. ; Ade, Harald ; O'Connor, Brendan T. ; So, Franky</creatorcontrib><description>Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years.
Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201700461</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bend tests ; Data storage ; Electronic devices ; Extrapolation ; Ferroelectric materials ; Film thickness ; Flexibility ; flexible electronics ; hafnia films ; Hafnium oxide ; Heating rate ; Low voltage ; low‐temperature processes ; Materials science ; Memory devices ; nonvolatile memory ; Polarization ; Random access memory ; Substrates ; Thin films ; Wearable technology</subject><ispartof>Advanced functional materials, 2017-06, Vol.27 (21), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</citedby><cites>FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201700461$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201700461$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yu, Hyeonggeun</creatorcontrib><creatorcontrib>Chung, Ching‐Chang</creatorcontrib><creatorcontrib>Shewmon, Nate</creatorcontrib><creatorcontrib>Ho, Szuheng</creatorcontrib><creatorcontrib>Carpenter, Joshua H.</creatorcontrib><creatorcontrib>Larrabee, Ryan</creatorcontrib><creatorcontrib>Sun, Tianlei</creatorcontrib><creatorcontrib>Jones, Jacob L.</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>O'Connor, Brendan T.</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><title>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</title><title>Advanced functional materials</title><description>Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years.
Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.</description><subject>Bend tests</subject><subject>Data storage</subject><subject>Electronic devices</subject><subject>Extrapolation</subject><subject>Ferroelectric materials</subject><subject>Film thickness</subject><subject>Flexibility</subject><subject>flexible electronics</subject><subject>hafnia films</subject><subject>Hafnium oxide</subject><subject>Heating rate</subject><subject>Low voltage</subject><subject>low‐temperature processes</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>nonvolatile memory</subject><subject>Polarization</subject><subject>Random access memory</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEQxRujiYhePW_iebFf23aPBFzEgF4w8dYs3Vkt2d1iCyj_vSUYPHqaN5n3m8k8hG4JHhCM6X1Z1e2AYiIx5oKcoR4RRKQMU3V-0uTtEl2FsMLRJhnvoaeigW-7bCCZds6_l501SQHeO2jAbHzsFh-2SwrbtCGpnU-eXbdzTbmxEZlD6_w-GcPOGgjX6KIumwA3v7WPXouHxegxnb1MpqPhLDVMMZIyIUtOMqkEpZmoFFY8B46VqsolzihXwHm1VBWIqjYszkwueRRSQpaz3LA-ujvuXXv3uYWw0Su39V08qUlOMWeUZCS6BkeX8S4ED7Vee9uWfq8J1oe89CEvfcorAvkR-Iqv7f9x6-G4mP-xP5K_bZo</recordid><startdate>20170606</startdate><enddate>20170606</enddate><creator>Yu, Hyeonggeun</creator><creator>Chung, Ching‐Chang</creator><creator>Shewmon, Nate</creator><creator>Ho, Szuheng</creator><creator>Carpenter, Joshua H.</creator><creator>Larrabee, Ryan</creator><creator>Sun, Tianlei</creator><creator>Jones, Jacob L.</creator><creator>Ade, Harald</creator><creator>O'Connor, Brendan T.</creator><creator>So, Franky</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170606</creationdate><title>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</title><author>Yu, Hyeonggeun ; Chung, Ching‐Chang ; Shewmon, Nate ; Ho, Szuheng ; Carpenter, Joshua H. ; Larrabee, Ryan ; Sun, Tianlei ; Jones, Jacob L. ; Ade, Harald ; O'Connor, Brendan T. ; So, Franky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bend tests</topic><topic>Data storage</topic><topic>Electronic devices</topic><topic>Extrapolation</topic><topic>Ferroelectric materials</topic><topic>Film thickness</topic><topic>Flexibility</topic><topic>flexible electronics</topic><topic>hafnia films</topic><topic>Hafnium oxide</topic><topic>Heating rate</topic><topic>Low voltage</topic><topic>low‐temperature processes</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>nonvolatile memory</topic><topic>Polarization</topic><topic>Random access memory</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hyeonggeun</creatorcontrib><creatorcontrib>Chung, Ching‐Chang</creatorcontrib><creatorcontrib>Shewmon, Nate</creatorcontrib><creatorcontrib>Ho, Szuheng</creatorcontrib><creatorcontrib>Carpenter, Joshua H.</creatorcontrib><creatorcontrib>Larrabee, Ryan</creatorcontrib><creatorcontrib>Sun, Tianlei</creatorcontrib><creatorcontrib>Jones, Jacob L.</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>O'Connor, Brendan T.</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hyeonggeun</au><au>Chung, Ching‐Chang</au><au>Shewmon, Nate</au><au>Ho, Szuheng</au><au>Carpenter, Joshua H.</au><au>Larrabee, Ryan</au><au>Sun, Tianlei</au><au>Jones, Jacob L.</au><au>Ade, Harald</au><au>O'Connor, Brendan T.</au><au>So, Franky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2017-06-06</date><risdate>2017</risdate><volume>27</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years.
Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201700461</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-06, Vol.27 (21), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_1920432151 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bend tests Data storage Electronic devices Extrapolation Ferroelectric materials Film thickness Flexibility flexible electronics hafnia films Hafnium oxide Heating rate Low voltage low‐temperature processes Materials science Memory devices nonvolatile memory Polarization Random access memory Substrates Thin films Wearable technology |
title | Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Inorganic%20Ferroelectric%20Thin%20Films%20for%20Nonvolatile%20Memory%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Hyeonggeun&rft.date=2017-06-06&rft.volume=27&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201700461&rft_dat=%3Cproquest_cross%3E1920432151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920432151&rft_id=info:pmid/&rfr_iscdi=true |