Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices

Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-06, Vol.27 (21), p.n/a
Hauptverfasser: Yu, Hyeonggeun, Chung, Ching‐Chang, Shewmon, Nate, Ho, Szuheng, Carpenter, Joshua H., Larrabee, Ryan, Sun, Tianlei, Jones, Jacob L., Ade, Harald, O'Connor, Brendan T., So, Franky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 27
creator Yu, Hyeonggeun
Chung, Ching‐Chang
Shewmon, Nate
Ho, Szuheng
Carpenter, Joshua H.
Larrabee, Ryan
Sun, Tianlei
Jones, Jacob L.
Ade, Harald
O'Connor, Brendan T.
So, Franky
description Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years. Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.
doi_str_mv 10.1002/adfm.201700461
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1920432151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920432151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxRujiYhePW_iebFf23aPBFzEgF4w8dYs3Vkt2d1iCyj_vSUYPHqaN5n3m8k8hG4JHhCM6X1Z1e2AYiIx5oKcoR4RRKQMU3V-0uTtEl2FsMLRJhnvoaeigW-7bCCZds6_l501SQHeO2jAbHzsFh-2SwrbtCGpnU-eXbdzTbmxEZlD6_w-GcPOGgjX6KIumwA3v7WPXouHxegxnb1MpqPhLDVMMZIyIUtOMqkEpZmoFFY8B46VqsolzihXwHm1VBWIqjYszkwueRRSQpaz3LA-ujvuXXv3uYWw0Su39V08qUlOMWeUZCS6BkeX8S4ED7Vee9uWfq8J1oe89CEvfcorAvkR-Iqv7f9x6-G4mP-xP5K_bZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920432151</pqid></control><display><type>article</type><title>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Hyeonggeun ; Chung, Ching‐Chang ; Shewmon, Nate ; Ho, Szuheng ; Carpenter, Joshua H. ; Larrabee, Ryan ; Sun, Tianlei ; Jones, Jacob L. ; Ade, Harald ; O'Connor, Brendan T. ; So, Franky</creator><creatorcontrib>Yu, Hyeonggeun ; Chung, Ching‐Chang ; Shewmon, Nate ; Ho, Szuheng ; Carpenter, Joshua H. ; Larrabee, Ryan ; Sun, Tianlei ; Jones, Jacob L. ; Ade, Harald ; O'Connor, Brendan T. ; So, Franky</creatorcontrib><description>Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years. Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201700461</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bend tests ; Data storage ; Electronic devices ; Extrapolation ; Ferroelectric materials ; Film thickness ; Flexibility ; flexible electronics ; hafnia films ; Hafnium oxide ; Heating rate ; Low voltage ; low‐temperature processes ; Materials science ; Memory devices ; nonvolatile memory ; Polarization ; Random access memory ; Substrates ; Thin films ; Wearable technology</subject><ispartof>Advanced functional materials, 2017-06, Vol.27 (21), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</citedby><cites>FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201700461$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201700461$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yu, Hyeonggeun</creatorcontrib><creatorcontrib>Chung, Ching‐Chang</creatorcontrib><creatorcontrib>Shewmon, Nate</creatorcontrib><creatorcontrib>Ho, Szuheng</creatorcontrib><creatorcontrib>Carpenter, Joshua H.</creatorcontrib><creatorcontrib>Larrabee, Ryan</creatorcontrib><creatorcontrib>Sun, Tianlei</creatorcontrib><creatorcontrib>Jones, Jacob L.</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>O'Connor, Brendan T.</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><title>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</title><title>Advanced functional materials</title><description>Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years. Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.</description><subject>Bend tests</subject><subject>Data storage</subject><subject>Electronic devices</subject><subject>Extrapolation</subject><subject>Ferroelectric materials</subject><subject>Film thickness</subject><subject>Flexibility</subject><subject>flexible electronics</subject><subject>hafnia films</subject><subject>Hafnium oxide</subject><subject>Heating rate</subject><subject>Low voltage</subject><subject>low‐temperature processes</subject><subject>Materials science</subject><subject>Memory devices</subject><subject>nonvolatile memory</subject><subject>Polarization</subject><subject>Random access memory</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEQxRujiYhePW_iebFf23aPBFzEgF4w8dYs3Vkt2d1iCyj_vSUYPHqaN5n3m8k8hG4JHhCM6X1Z1e2AYiIx5oKcoR4RRKQMU3V-0uTtEl2FsMLRJhnvoaeigW-7bCCZds6_l501SQHeO2jAbHzsFh-2SwrbtCGpnU-eXbdzTbmxEZlD6_w-GcPOGgjX6KIumwA3v7WPXouHxegxnb1MpqPhLDVMMZIyIUtOMqkEpZmoFFY8B46VqsolzihXwHm1VBWIqjYszkwueRRSQpaz3LA-ujvuXXv3uYWw0Su39V08qUlOMWeUZCS6BkeX8S4ED7Vee9uWfq8J1oe89CEvfcorAvkR-Iqv7f9x6-G4mP-xP5K_bZo</recordid><startdate>20170606</startdate><enddate>20170606</enddate><creator>Yu, Hyeonggeun</creator><creator>Chung, Ching‐Chang</creator><creator>Shewmon, Nate</creator><creator>Ho, Szuheng</creator><creator>Carpenter, Joshua H.</creator><creator>Larrabee, Ryan</creator><creator>Sun, Tianlei</creator><creator>Jones, Jacob L.</creator><creator>Ade, Harald</creator><creator>O'Connor, Brendan T.</creator><creator>So, Franky</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170606</creationdate><title>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</title><author>Yu, Hyeonggeun ; Chung, Ching‐Chang ; Shewmon, Nate ; Ho, Szuheng ; Carpenter, Joshua H. ; Larrabee, Ryan ; Sun, Tianlei ; Jones, Jacob L. ; Ade, Harald ; O'Connor, Brendan T. ; So, Franky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3831-367a4157862256d80849e4088dab05248e44db8de6dfc349ec974c3477e5939c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bend tests</topic><topic>Data storage</topic><topic>Electronic devices</topic><topic>Extrapolation</topic><topic>Ferroelectric materials</topic><topic>Film thickness</topic><topic>Flexibility</topic><topic>flexible electronics</topic><topic>hafnia films</topic><topic>Hafnium oxide</topic><topic>Heating rate</topic><topic>Low voltage</topic><topic>low‐temperature processes</topic><topic>Materials science</topic><topic>Memory devices</topic><topic>nonvolatile memory</topic><topic>Polarization</topic><topic>Random access memory</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hyeonggeun</creatorcontrib><creatorcontrib>Chung, Ching‐Chang</creatorcontrib><creatorcontrib>Shewmon, Nate</creatorcontrib><creatorcontrib>Ho, Szuheng</creatorcontrib><creatorcontrib>Carpenter, Joshua H.</creatorcontrib><creatorcontrib>Larrabee, Ryan</creatorcontrib><creatorcontrib>Sun, Tianlei</creatorcontrib><creatorcontrib>Jones, Jacob L.</creatorcontrib><creatorcontrib>Ade, Harald</creatorcontrib><creatorcontrib>O'Connor, Brendan T.</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hyeonggeun</au><au>Chung, Ching‐Chang</au><au>Shewmon, Nate</au><au>Ho, Szuheng</au><au>Carpenter, Joshua H.</au><au>Larrabee, Ryan</au><au>Sun, Tianlei</au><au>Jones, Jacob L.</au><au>Ade, Harald</au><au>O'Connor, Brendan T.</au><au>So, Franky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices</atitle><jtitle>Advanced functional materials</jtitle><date>2017-06-06</date><risdate>2017</risdate><volume>27</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Next‐generation wearable electronics call for flexible nonvolatile devices for ubiquitous data storage. Thus far, only organic ferroelectric materials have shown intrinsic flexibility and processability on plastic substrates. Here, it is shown that by controlling the heating rate, ferroelectric hafnia films can be grown on plastic substrates. The resulting highly flexible capacitor with a film thickness of 30 nm yields a remnant polarization of 10 µC cm−2. Bending tests show that the film ferroelectricity can be retained under a bending radius below 8 mm with up to 1000 bending cycles. The excellent flexibility is due to the extremely thin hafnia film thickness. Using the ferroelectric film as a gate insulator, a low voltage nonvolatile vertical organic transistor is demonstrated on a plastic substrate with an extrapolated date retention time of up to 10 years. Flexible nonvolatile memory is developed using inorganic ferroelectric thin films. By controlling the heating rate, ferroelectric hafnia films can be grown on flexible substrates. Excellent bending tolerance is observed due to the thin hafnia film thickness. Making use of the film as a gate insulator, a nonvolatile vertical field‐effect transistor is demonstrated with extrapolated data retention times to 10 years.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201700461</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-06, Vol.27 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_1920432151
source Wiley Online Library Journals Frontfile Complete
subjects Bend tests
Data storage
Electronic devices
Extrapolation
Ferroelectric materials
Film thickness
Flexibility
flexible electronics
hafnia films
Hafnium oxide
Heating rate
Low voltage
low‐temperature processes
Materials science
Memory devices
nonvolatile memory
Polarization
Random access memory
Substrates
Thin films
Wearable technology
title Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Inorganic%20Ferroelectric%20Thin%20Films%20for%20Nonvolatile%20Memory%20Devices&rft.jtitle=Advanced%20functional%20materials&rft.au=Yu,%20Hyeonggeun&rft.date=2017-06-06&rft.volume=27&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201700461&rft_dat=%3Cproquest_cross%3E1920432151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920432151&rft_id=info:pmid/&rfr_iscdi=true