Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition

Na‐metal batteries are considered as the promising alternative candidate for Li‐ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-05, Vol.29 (18), p.n/a
Hauptverfasser: Zhao, Yang, Goncharova, Lyudmila V., Lushington, Andrew, Sun, Qian, Yadegari, Hossein, Wang, Biqiong, Xiao, Wei, Li, Ruying, Sun, Xueliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Zhao, Yang
Goncharova, Lyudmila V.
Lushington, Andrew
Sun, Qian
Yadegari, Hossein
Wang, Biqiong
Xiao, Wei
Li, Ruying
Sun, Xueliang
description Na‐metal batteries are considered as the promising alternative candidate for Li‐ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na‐metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na‐metal batteries. By protecting Na foil with ultrathin Al2O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next‐generation high energy‐density Na metal batteries. The atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na metal batteries. With ultrathin Al2O3 protective layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved even up to 500 h without any degeneration.
doi_str_mv 10.1002/adma.201606663
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1920428709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920428709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4473-60437110f2d193d6df143f6608c2e985ecd8bfe21df5e7aa8dde1a6aa6068ac43</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMiJLzCm2kzjOGJVPKRVD6Ww58RlcJXFxElD-Palaysh0y7t3uofQNSVzSgi7U7pWc0YoJ5zz8ARNacxoEJE0PkVTkoZxkPJITNBF224IIenInaMJEyzmScynaL3qt-Ct83jVqaICrBqNc9e849wawCunbV_jJXSqwlnjNLQ4Kz8sfIHGxYCzztW2xLkawON72LrWdtY1l-jMqKqFq8OcofXjw9viOchfn14WWR6UUZSEASdRmFBKDNM0DTXXhkah4ZyIkkEqYii1KAwwqk0MiVJCa6CKKzV-IVQZhTN0u_duvfvsoe3kxvW-GU9KmjISMZGMDWZovqdK79rWg5Fbb2vlB0mJ3FWUu4ryWHFcuDlo-6IGfcR_s41Auge-bQXDPzqZ3S-zP_kPfv59kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920428709</pqid></control><display><type>article</type><title>Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Yang ; Goncharova, Lyudmila V. ; Lushington, Andrew ; Sun, Qian ; Yadegari, Hossein ; Wang, Biqiong ; Xiao, Wei ; Li, Ruying ; Sun, Xueliang</creator><creatorcontrib>Zhao, Yang ; Goncharova, Lyudmila V. ; Lushington, Andrew ; Sun, Qian ; Yadegari, Hossein ; Wang, Biqiong ; Xiao, Wei ; Li, Ruying ; Sun, Xueliang</creatorcontrib><description>Na‐metal batteries are considered as the promising alternative candidate for Li‐ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na‐metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na‐metal batteries. By protecting Na foil with ultrathin Al2O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next‐generation high energy‐density Na metal batteries. The atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na metal batteries. With ultrathin Al2O3 protective layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved even up to 500 h without any degeneration.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201606663</identifier><identifier>PMID: 28256756</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Anodes ; Anodic protection ; atomic layer deposition ; Atomic layer epitaxy ; Combustion ; Electrochemical potential ; Flux density ; Foils ; Low cost ; Materials science ; metallic sodium anodes, Rutherford backscattering spectrometry ; Plating ; Protective coatings ; Rechargeable batteries ; Short circuits ; Sodium ; sodium metal batteries ; Stripping ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2017-05, Vol.29 (18), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4473-60437110f2d193d6df143f6608c2e985ecd8bfe21df5e7aa8dde1a6aa6068ac43</citedby><cites>FETCH-LOGICAL-c4473-60437110f2d193d6df143f6608c2e985ecd8bfe21df5e7aa8dde1a6aa6068ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201606663$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201606663$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28256756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Goncharova, Lyudmila V.</creatorcontrib><creatorcontrib>Lushington, Andrew</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Yadegari, Hossein</creatorcontrib><creatorcontrib>Wang, Biqiong</creatorcontrib><creatorcontrib>Xiao, Wei</creatorcontrib><creatorcontrib>Li, Ruying</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><title>Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Na‐metal batteries are considered as the promising alternative candidate for Li‐ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na‐metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na‐metal batteries. By protecting Na foil with ultrathin Al2O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next‐generation high energy‐density Na metal batteries. The atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na metal batteries. With ultrathin Al2O3 protective layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved even up to 500 h without any degeneration.</description><subject>Aluminum oxide</subject><subject>Anodes</subject><subject>Anodic protection</subject><subject>atomic layer deposition</subject><subject>Atomic layer epitaxy</subject><subject>Combustion</subject><subject>Electrochemical potential</subject><subject>Flux density</subject><subject>Foils</subject><subject>Low cost</subject><subject>Materials science</subject><subject>metallic sodium anodes, Rutherford backscattering spectrometry</subject><subject>Plating</subject><subject>Protective coatings</subject><subject>Rechargeable batteries</subject><subject>Short circuits</subject><subject>Sodium</subject><subject>sodium metal batteries</subject><subject>Stripping</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EoqWwMiJLzCm2kzjOGJVPKRVD6Ww58RlcJXFxElD-Palaysh0y7t3uofQNSVzSgi7U7pWc0YoJ5zz8ARNacxoEJE0PkVTkoZxkPJITNBF224IIenInaMJEyzmScynaL3qt-Ct83jVqaICrBqNc9e849wawCunbV_jJXSqwlnjNLQ4Kz8sfIHGxYCzztW2xLkawON72LrWdtY1l-jMqKqFq8OcofXjw9viOchfn14WWR6UUZSEASdRmFBKDNM0DTXXhkah4ZyIkkEqYii1KAwwqk0MiVJCa6CKKzV-IVQZhTN0u_duvfvsoe3kxvW-GU9KmjISMZGMDWZovqdK79rWg5Fbb2vlB0mJ3FWUu4ryWHFcuDlo-6IGfcR_s41Auge-bQXDPzqZ3S-zP_kPfv59kg</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Zhao, Yang</creator><creator>Goncharova, Lyudmila V.</creator><creator>Lushington, Andrew</creator><creator>Sun, Qian</creator><creator>Yadegari, Hossein</creator><creator>Wang, Biqiong</creator><creator>Xiao, Wei</creator><creator>Li, Ruying</creator><creator>Sun, Xueliang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170510</creationdate><title>Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition</title><author>Zhao, Yang ; Goncharova, Lyudmila V. ; Lushington, Andrew ; Sun, Qian ; Yadegari, Hossein ; Wang, Biqiong ; Xiao, Wei ; Li, Ruying ; Sun, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4473-60437110f2d193d6df143f6608c2e985ecd8bfe21df5e7aa8dde1a6aa6068ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Anodes</topic><topic>Anodic protection</topic><topic>atomic layer deposition</topic><topic>Atomic layer epitaxy</topic><topic>Combustion</topic><topic>Electrochemical potential</topic><topic>Flux density</topic><topic>Foils</topic><topic>Low cost</topic><topic>Materials science</topic><topic>metallic sodium anodes, Rutherford backscattering spectrometry</topic><topic>Plating</topic><topic>Protective coatings</topic><topic>Rechargeable batteries</topic><topic>Short circuits</topic><topic>Sodium</topic><topic>sodium metal batteries</topic><topic>Stripping</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Goncharova, Lyudmila V.</creatorcontrib><creatorcontrib>Lushington, Andrew</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Yadegari, Hossein</creatorcontrib><creatorcontrib>Wang, Biqiong</creatorcontrib><creatorcontrib>Xiao, Wei</creatorcontrib><creatorcontrib>Li, Ruying</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yang</au><au>Goncharova, Lyudmila V.</au><au>Lushington, Andrew</au><au>Sun, Qian</au><au>Yadegari, Hossein</au><au>Wang, Biqiong</au><au>Xiao, Wei</au><au>Li, Ruying</au><au>Sun, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>29</volume><issue>18</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Na‐metal batteries are considered as the promising alternative candidate for Li‐ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na‐metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na‐metal batteries. By protecting Na foil with ultrathin Al2O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next‐generation high energy‐density Na metal batteries. The atomic layer deposition of Al2O3 coating is first demonstrated for the protection of metallic Na anode for Na metal batteries. With ultrathin Al2O3 protective layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved even up to 500 h without any degeneration.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28256756</pmid><doi>10.1002/adma.201606663</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-05, Vol.29 (18), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_1920428709
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Anodes
Anodic protection
atomic layer deposition
Atomic layer epitaxy
Combustion
Electrochemical potential
Flux density
Foils
Low cost
Materials science
metallic sodium anodes, Rutherford backscattering spectrometry
Plating
Protective coatings
Rechargeable batteries
Short circuits
Sodium
sodium metal batteries
Stripping
Thickness
title Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Stable%20and%20Long%20Life%20Sodium%20Metal%20Anodes%20Achieved%20by%20Atomic%20Layer%20Deposition&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhao,%20Yang&rft.date=2017-05-10&rft.volume=29&rft.issue=18&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201606663&rft_dat=%3Cproquest_cross%3E1920428709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920428709&rft_id=info:pmid/28256756&rfr_iscdi=true