Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study

Semiconductor heterojunctions are used in a wide range of applications including catalysis, sensors, and solar‐to‐chemical energy conversion devices. These materials can spatially separate photogenerated charge across the heterojunction boundary, inhibiting recombination processes and synergisticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-05, Vol.27 (18), p.n/a
Hauptverfasser: Sotelo‐Vazquez, Carlos, Quesada‐Cabrera, Raul, Ling, Min, Scanlon, David O., Kafizas, Andreas, Thakur, Pardeep Kumar, Lee, Tien‐Lin, Taylor, Alaric, Watson, Graeme W., Palgrave, Robert G., Durrant, James R., Blackman, Christopher S., Parkin, Ivan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor heterojunctions are used in a wide range of applications including catalysis, sensors, and solar‐to‐chemical energy conversion devices. These materials can spatially separate photogenerated charge across the heterojunction boundary, inhibiting recombination processes and synergistically enhancing their performance beyond the individual components. In this work, the WO3/TiO2 heterojunction grown by chemical vapor deposition is investigated. This consists of a highly nanostructured WO3 layer of vertically aligned nanorods that is then coated with a conformal layer of TiO2. This heterojunction shows an unusual electron transfer process, where photogenerated electrons move from the WO3 layer into TiO2. State‐of‐the‐art hybrid density functional theory and hard X‐ray photoelectron spectroscopy are used to elucidate the electronic interaction at the WO3/TiO2 interface. Transient absorption spectroscopy shows that recombination is substantially reduced, extending both the lifetime and population of photogenerated charges into timescales relevant to most photocatalytic processes. This increases the photocatalytic efficiency of the material, which is among the highest ever reported for a thin film. In allying computational and experimental methods, this is believed to be an ideal strategy for determining the band alignment in metal oxide heterojunction systems. Advanced nanostructured WO3/TiO2 heterojunction films are deposited using chemical vapor deposition methods. Against common observation, this system shows an unusual electron transfer from WO3 to TiO2, as proven by theoretical and experimental standpoints. The advantageous electronic synergy within a high‐surface‐area substrate promotes its photocatalytic properties showing record‐high efficiencies for the degradation of organic pollutants.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201605413