Circular arc approximation by quartic H-Bézier curve

The quartic H-Bézier curve is used for the approximation of circular arcs. It has five control points and one positive real free parameter. The four control points are carried out by G^1-approximation constraints and the remaining control point is dividing the line segment joining the second and fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pakistan journal of statistics and operation research 2017-01, Vol.13 (2), p.417
Hauptverfasser: Hussain, Maria, Ong, Wen Eng, Nazir, Farah, Hussain, Malik Zawwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 417
container_title Pakistan journal of statistics and operation research
container_volume 13
creator Hussain, Maria
Ong, Wen Eng
Nazir, Farah
Hussain, Malik Zawwar
description The quartic H-Bézier curve is used for the approximation of circular arcs. It has five control points and one positive real free parameter. The four control points are carried out by G^1-approximation constraints and the remaining control point is dividing the line segment joining the second and fourth control points in the ratio 1:2. Optimized value of free parameter ? is obtained by minimizing the maximum value of absolute radius error of the recommended approximation scheme. The developed approximation scheme is found considerably better than the existing approximation schemes for these computed values of control points and optimized value of the free parameter.
doi_str_mv 10.18187/pjsor.v13i2.1689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1920001167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920001167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-62ebc64833c748544e58edb99d558a6008f8705f8249dda1c3e16af13e50ae813</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EElHpAdhFYp3gseOfLCECilSJDawtx3EkV6VJx0lFuRHn4GKkKavZfJr33kfILdAcNGh1329ih_kBeGA5SF1ekIQxRjOhgV6SZIJkxhTANVnGGGrKZKlAMJUQUQV049ZiatGltu-x-wqfdgjdLq2P6X60OASXrrLH35_v4DF1Ix78Dblq7Tb65f9dkI_np_dqla3fXl6rh3XmmOJDJpmvnSw0504VWhSFF9o3dVk2QmgrKdWtVlS0mhVl01hw3IO0LXAvqPUa-ILcnf9Otfajj4PZdCPupkgDJaOUAkg1UXCmHHYxom9Nj9MGPBqgZhZkZkFmFmROgvgfmGNaVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920001167</pqid></control><display><type>article</type><title>Circular arc approximation by quartic H-Bézier curve</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hussain, Maria ; Ong, Wen Eng ; Nazir, Farah ; Hussain, Malik Zawwar</creator><creatorcontrib>Hussain, Maria ; Ong, Wen Eng ; Nazir, Farah ; Hussain, Malik Zawwar</creatorcontrib><description>The quartic H-Bézier curve is used for the approximation of circular arcs. It has five control points and one positive real free parameter. The four control points are carried out by G^1-approximation constraints and the remaining control point is dividing the line segment joining the second and fourth control points in the ratio 1:2. Optimized value of free parameter ? is obtained by minimizing the maximum value of absolute radius error of the recommended approximation scheme. The developed approximation scheme is found considerably better than the existing approximation schemes for these computed values of control points and optimized value of the free parameter.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v13i2.1689</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical &amp; Actuarial Science</publisher><subject>Approximation ; Circularity ; Mathematical analysis</subject><ispartof>Pakistan journal of statistics and operation research, 2017-01, Vol.13 (2), p.417</ispartof><rights>Copyright University of the Punjab, College of Statistical &amp; Actuarial Science 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-62ebc64833c748544e58edb99d558a6008f8705f8249dda1c3e16af13e50ae813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hussain, Maria</creatorcontrib><creatorcontrib>Ong, Wen Eng</creatorcontrib><creatorcontrib>Nazir, Farah</creatorcontrib><creatorcontrib>Hussain, Malik Zawwar</creatorcontrib><title>Circular arc approximation by quartic H-Bézier curve</title><title>Pakistan journal of statistics and operation research</title><description>The quartic H-Bézier curve is used for the approximation of circular arcs. It has five control points and one positive real free parameter. The four control points are carried out by G^1-approximation constraints and the remaining control point is dividing the line segment joining the second and fourth control points in the ratio 1:2. Optimized value of free parameter ? is obtained by minimizing the maximum value of absolute radius error of the recommended approximation scheme. The developed approximation scheme is found considerably better than the existing approximation schemes for these computed values of control points and optimized value of the free parameter.</description><subject>Approximation</subject><subject>Circularity</subject><subject>Mathematical analysis</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkE1OwzAQhS0EElHpAdhFYp3gseOfLCECilSJDawtx3EkV6VJx0lFuRHn4GKkKavZfJr33kfILdAcNGh1329ih_kBeGA5SF1ekIQxRjOhgV6SZIJkxhTANVnGGGrKZKlAMJUQUQV049ZiatGltu-x-wqfdgjdLq2P6X60OASXrrLH35_v4DF1Ix78Dblq7Tb65f9dkI_np_dqla3fXl6rh3XmmOJDJpmvnSw0504VWhSFF9o3dVk2QmgrKdWtVlS0mhVl01hw3IO0LXAvqPUa-ILcnf9Otfajj4PZdCPupkgDJaOUAkg1UXCmHHYxom9Nj9MGPBqgZhZkZkFmFmROgvgfmGNaVQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Hussain, Maria</creator><creator>Ong, Wen Eng</creator><creator>Nazir, Farah</creator><creator>Hussain, Malik Zawwar</creator><general>University of the Punjab, College of Statistical &amp; Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170101</creationdate><title>Circular arc approximation by quartic H-Bézier curve</title><author>Hussain, Maria ; Ong, Wen Eng ; Nazir, Farah ; Hussain, Malik Zawwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-62ebc64833c748544e58edb99d558a6008f8705f8249dda1c3e16af13e50ae813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Circularity</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Maria</creatorcontrib><creatorcontrib>Ong, Wen Eng</creatorcontrib><creatorcontrib>Nazir, Farah</creatorcontrib><creatorcontrib>Hussain, Malik Zawwar</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Maria</au><au>Ong, Wen Eng</au><au>Nazir, Farah</au><au>Hussain, Malik Zawwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circular arc approximation by quartic H-Bézier curve</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>417</spage><pages>417-</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>The quartic H-Bézier curve is used for the approximation of circular arcs. It has five control points and one positive real free parameter. The four control points are carried out by G^1-approximation constraints and the remaining control point is dividing the line segment joining the second and fourth control points in the ratio 1:2. Optimized value of free parameter ? is obtained by minimizing the maximum value of absolute radius error of the recommended approximation scheme. The developed approximation scheme is found considerably better than the existing approximation schemes for these computed values of control points and optimized value of the free parameter.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical &amp; Actuarial Science</pub><doi>10.18187/pjsor.v13i2.1689</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1816-2711
ispartof Pakistan journal of statistics and operation research, 2017-01, Vol.13 (2), p.417
issn 1816-2711
2220-5810
language eng
recordid cdi_proquest_journals_1920001167
source EZB-FREE-00999 freely available EZB journals
subjects Approximation
Circularity
Mathematical analysis
title Circular arc approximation by quartic H-Bézier curve
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circular%20arc%20approximation%20by%20quartic%20H-B%C3%A9zier%20curve&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Hussain,%20Maria&rft.date=2017-01-01&rft.volume=13&rft.issue=2&rft.spage=417&rft.pages=417-&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v13i2.1689&rft_dat=%3Cproquest_cross%3E1920001167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920001167&rft_id=info:pmid/&rfr_iscdi=true