Converting immanants on singular symmetric matrices

Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2017-07, Vol.38 (4), p.630-636
Hauptverfasser: Duffner, M. A., Guterman, A. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 4
container_start_page 630
container_title Lobachevskii journal of mathematics
container_volume 38
creator Duffner, M. A.
Guterman, A. E.
description Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) for all singular matrices A , B ∈ Σ n (F) and all scalars α ∈ F are linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on the set of all symmetric matrices.
doi_str_mv 10.1134/S1995080217040060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919664128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919664128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bfa51ca24bee6561fc0a4238972f44c2eca68636812c3635a00c6ca2897fd83f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC59WZJDtNjrKoFQoe1POSxqRs6WZrsiv035uyHgTxNMO8772Bx9g1wi2ikHevqHUFCjguQAIQnLAZKlSl1sRP857l8qifs4uUtgCcE9GMiboPXy4ObdgUbdeZYMKQij4UKV_GnYlFOnSdG2Jri84ch0uX7MybXXJXP3PO3h8f3upluXp5eq7vV6UVSEO59qZCa7hcO0cVobdgJBdKL7iX0nJnDSkSpJBbQaIyAJYynwH_oYQXc3Yz5e5j_zm6NDTbfowhv2xQoyaSyFWmcKJs7FOKzjf72HYmHhqE5thN86eb7OGTJ2U2bFz8lfyv6Rvo5WTy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919664128</pqid></control><display><type>article</type><title>Converting immanants on singular symmetric matrices</title><source>SpringerNature Journals</source><creator>Duffner, M. A. ; Guterman, A. E.</creator><creatorcontrib>Duffner, M. A. ; Guterman, A. E.</creatorcontrib><description>Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) for all singular matrices A , B ∈ Σ n (F) and all scalars α ∈ F are linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on the set of all symmetric matrices.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080217040060</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Conversion ; Geometry ; Mathematical analysis ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Matrix methods ; Probability Theory and Stochastic Processes ; Scalars</subject><ispartof>Lobachevskii journal of mathematics, 2017-07, Vol.38 (4), p.630-636</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bfa51ca24bee6561fc0a4238972f44c2eca68636812c3635a00c6ca2897fd83f3</citedby><cites>FETCH-LOGICAL-c316t-bfa51ca24bee6561fc0a4238972f44c2eca68636812c3635a00c6ca2897fd83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080217040060$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080217040060$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Duffner, M. A.</creatorcontrib><creatorcontrib>Guterman, A. E.</creatorcontrib><title>Converting immanants on singular symmetric matrices</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) for all singular matrices A , B ∈ Σ n (F) and all scalars α ∈ F are linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on the set of all symmetric matrices.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Conversion</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Matrix methods</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Scalars</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuC59WZJDtNjrKoFQoe1POSxqRs6WZrsiv035uyHgTxNMO8772Bx9g1wi2ikHevqHUFCjguQAIQnLAZKlSl1sRP857l8qifs4uUtgCcE9GMiboPXy4ObdgUbdeZYMKQij4UKV_GnYlFOnSdG2Jri84ch0uX7MybXXJXP3PO3h8f3upluXp5eq7vV6UVSEO59qZCa7hcO0cVobdgJBdKL7iX0nJnDSkSpJBbQaIyAJYynwH_oYQXc3Yz5e5j_zm6NDTbfowhv2xQoyaSyFWmcKJs7FOKzjf72HYmHhqE5thN86eb7OGTJ2U2bFz8lfyv6Rvo5WTy</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Duffner, M. A.</creator><creator>Guterman, A. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Converting immanants on singular symmetric matrices</title><author>Duffner, M. A. ; Guterman, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bfa51ca24bee6561fc0a4238972f44c2eca68636812c3635a00c6ca2897fd83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Conversion</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Matrix methods</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duffner, M. A.</creatorcontrib><creatorcontrib>Guterman, A. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duffner, M. A.</au><au>Guterman, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Converting immanants on singular symmetric matrices</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>38</volume><issue>4</issue><spage>630</spage><epage>636</epage><pages>630-636</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) for all singular matrices A , B ∈ Σ n (F) and all scalars α ∈ F are linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on the set of all symmetric matrices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080217040060</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2017-07, Vol.38 (4), p.630-636
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_1919664128
source SpringerNature Journals
subjects Algebra
Analysis
Conversion
Geometry
Mathematical analysis
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Matrix methods
Probability Theory and Stochastic Processes
Scalars
title Converting immanants on singular symmetric matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Converting%20immanants%20on%20singular%20symmetric%20matrices&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Duffner,%20M.%20A.&rft.date=2017-07-01&rft.volume=38&rft.issue=4&rft.spage=630&rft.epage=636&rft.pages=630-636&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080217040060&rft_dat=%3Cproquest_cross%3E1919664128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919664128&rft_id=info:pmid/&rfr_iscdi=true