Converting immanants on singular symmetric matrices
Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) f...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2017-07, Vol.38 (4), p.630-636 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Σ
n
(F) denote the space of all
n
×
n
symmetricmatrices over the complex field F, and χ be an irreducible character of
S
n
and
d
χ
the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ
n
(F) → Σ
n
(F) satisfying
d
χ
(Φ(
A
) +
α
Φ(
B
)) =
det
(
A
+
αB
) for all singular matrices
A
,
B
∈ Σ
n
(F) and all scalars
α
∈ F are linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on the set of all symmetric matrices. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080217040060 |