Converting immanants on singular symmetric matrices

Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2017-07, Vol.38 (4), p.630-636
Hauptverfasser: Duffner, M. A., Guterman, A. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Σ n (F) denote the space of all n × n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n (F) satisfying d χ (Φ( A ) + α Φ( B )) = det ( A + αB ) for all singular matrices A , B ∈ Σ n (F) and all scalars α ∈ F are linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on the set of all symmetric matrices.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080217040060