Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation

We have developed a large-area, low-cost, high-efficiency neutron detector for vehicle-mounted operation. The detector, which has overall dimensions 12.7 cm x 91.4 cm x 102 cm (5"x36"x40"), a sensitive area equal to 0.85 m 2 (1320 in 2 ), and weight of 110 kg (242 lbs), employs an arr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2017-07, Vol.64 (7), p.1696-1703
Hauptverfasser: Lacy, Jeffrey L., Martin, Christopher S., Athanasiades, Athanasios, Regmi, Murari, Vazquez-Flores, Gerson J., Davenport, Stephen, King, Nicholas S., Lyons, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1703
container_issue 7
container_start_page 1696
container_title IEEE transactions on nuclear science
container_volume 64
creator Lacy, Jeffrey L.
Martin, Christopher S.
Athanasiades, Athanasios
Regmi, Murari
Vazquez-Flores, Gerson J.
Davenport, Stephen
King, Nicholas S.
Lyons, Tom
description We have developed a large-area, low-cost, high-efficiency neutron detector for vehicle-mounted operation. The detector, which has overall dimensions 12.7 cm x 91.4 cm x 102 cm (5"x36"x40"), a sensitive area equal to 0.85 m 2 (1320 in 2 ), and weight of 110 kg (242 lbs), employs an array of 90 boron-coated straw (BCS) detectors. PTI has also developed electronics to minimize cost and space while providing low-noise signal conditioning for both neutron and gamma detection channels, as well as low energy Bluetooth communication with handheld devices. Extremely low power consumption allows continuous use for 225 hours (-.10 days) using three AAA lithium-ion rechargeable batteries. We present radiological, mechanical, and environmental tests, collected from four full-scale prototypes. Outdoor neutron-counting tests with a moderated 252 Cf source 2 m away from the center of the detector face showed an average detection rate of 5.5 cps/ng with a standard deviation of 0.09 cps/ng over the four individual detector measurements. Measurements showed a gamma rejection ratio of 1.0 x 10 -8 , and gamma absolute rejection ratio (GARRn) of 0.93. The prototypes were also operated successfully onboard a moving vehicle for high-speed tests and a long-range 1433-mile, two-day road trip from Houston, TX, USA, to Laurel, MD, USA. Using auxiliary DARPA SIGMA equipment, the GPS, timestamp, gamma and neutron data were transmitted over the cellular network with 10 Hz resolution to a server and real-time tracking website. Mechanical impact and electrostatic discharge testing produced no spurious counts in either the neutron or gamma channels. Ambient environmental temperature testing showed less than ±1% response variation over the range from -30°C to +55°C.
doi_str_mv 10.1109/TNS.2016.2631451
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1919592024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7752944</ieee_id><sourcerecordid>1919592024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-404918f893f1a0deb33b7e6f9320bd0f3208674a787965f9ccda1d1e3c07577b3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvB6zLz2qRpjmNOJ9Tt4PQa2vRl65jNTFNk_70dGx4ePx58v_fgI-Qe2BiAqafV4mMcM0jHcZoAF3BBBiBERkHI7JIMGIOMKq7UNblp222_csHEgKzywq-RTjwWoyh3v3Tq2jCK5vV6Q2fW1qbGxhyiBXbBuyZ6xoAmOB_Zfr5wU5sd0nfXNQGraLlHX4TaNbfkyha7Fu_OOSSfL7PVdE7z5evbdJJTEysIlDOuILOZSiwUrMIySUqJqVVJzMqK2T6yVPJCZlKlwipjqgIqwMQwKaQskyF5PN3de_fTYRv01nW-6V9qUKCEilnMe4qdKONd23q0eu_r78IfNDB9dKd7d_roTp_d9ZWHU6VGxH9cShErzpM_5-VpEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919592024</pqid></control><display><type>article</type><title>Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation</title><source>IEEE Electronic Library (IEL)</source><creator>Lacy, Jeffrey L. ; Martin, Christopher S. ; Athanasiades, Athanasios ; Regmi, Murari ; Vazquez-Flores, Gerson J. ; Davenport, Stephen ; King, Nicholas S. ; Lyons, Tom</creator><creatorcontrib>Lacy, Jeffrey L. ; Martin, Christopher S. ; Athanasiades, Athanasios ; Regmi, Murari ; Vazquez-Flores, Gerson J. ; Davenport, Stephen ; King, Nicholas S. ; Lyons, Tom</creatorcontrib><description>We have developed a large-area, low-cost, high-efficiency neutron detector for vehicle-mounted operation. The detector, which has overall dimensions 12.7 cm x 91.4 cm x 102 cm (5"x36"x40"), a sensitive area equal to 0.85 m 2 (1320 in 2 ), and weight of 110 kg (242 lbs), employs an array of 90 boron-coated straw (BCS) detectors. PTI has also developed electronics to minimize cost and space while providing low-noise signal conditioning for both neutron and gamma detection channels, as well as low energy Bluetooth communication with handheld devices. Extremely low power consumption allows continuous use for 225 hours (-.10 days) using three AAA lithium-ion rechargeable batteries. We present radiological, mechanical, and environmental tests, collected from four full-scale prototypes. Outdoor neutron-counting tests with a moderated 252 Cf source 2 m away from the center of the detector face showed an average detection rate of 5.5 cps/ng with a standard deviation of 0.09 cps/ng over the four individual detector measurements. Measurements showed a gamma rejection ratio of 1.0 x 10 -8 , and gamma absolute rejection ratio (GARRn) of 0.93. The prototypes were also operated successfully onboard a moving vehicle for high-speed tests and a long-range 1433-mile, two-day road trip from Houston, TX, USA, to Laurel, MD, USA. Using auxiliary DARPA SIGMA equipment, the GPS, timestamp, gamma and neutron data were transmitted over the cellular network with 10 Hz resolution to a server and real-time tracking website. Mechanical impact and electrostatic discharge testing produced no spurious counts in either the neutron or gamma channels. Ambient environmental temperature testing showed less than ±1% response variation over the range from -30°C to +55°C.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2016.2631451</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Bluetooth ; Boron ; Cellular communication ; Channels ; Conditioning ; Cost engineering ; Counting ; Detector instrumentation ; Detectors ; Electron tubes ; Electronic devices ; Electrostatic discharges ; Energy consumption ; Environmental testing ; Face ; Face recognition ; Fuel consumption ; Gamma-rays ; High speed ; Lithium ; Lithium batteries ; Neutrons ; Noise ; Onboard ; Power consumption ; Prototypes ; radiation detectors ; Real time ; Rechargeable batteries ; Rejection ; Sensors ; Straw ; Temperature effects</subject><ispartof>IEEE transactions on nuclear science, 2017-07, Vol.64 (7), p.1696-1703</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-404918f893f1a0deb33b7e6f9320bd0f3208674a787965f9ccda1d1e3c07577b3</citedby><cites>FETCH-LOGICAL-c291t-404918f893f1a0deb33b7e6f9320bd0f3208674a787965f9ccda1d1e3c07577b3</cites><orcidid>0000-0002-4596-3228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7752944$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7752944$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lacy, Jeffrey L.</creatorcontrib><creatorcontrib>Martin, Christopher S.</creatorcontrib><creatorcontrib>Athanasiades, Athanasios</creatorcontrib><creatorcontrib>Regmi, Murari</creatorcontrib><creatorcontrib>Vazquez-Flores, Gerson J.</creatorcontrib><creatorcontrib>Davenport, Stephen</creatorcontrib><creatorcontrib>King, Nicholas S.</creatorcontrib><creatorcontrib>Lyons, Tom</creatorcontrib><title>Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>We have developed a large-area, low-cost, high-efficiency neutron detector for vehicle-mounted operation. The detector, which has overall dimensions 12.7 cm x 91.4 cm x 102 cm (5"x36"x40"), a sensitive area equal to 0.85 m 2 (1320 in 2 ), and weight of 110 kg (242 lbs), employs an array of 90 boron-coated straw (BCS) detectors. PTI has also developed electronics to minimize cost and space while providing low-noise signal conditioning for both neutron and gamma detection channels, as well as low energy Bluetooth communication with handheld devices. Extremely low power consumption allows continuous use for 225 hours (-.10 days) using three AAA lithium-ion rechargeable batteries. We present radiological, mechanical, and environmental tests, collected from four full-scale prototypes. Outdoor neutron-counting tests with a moderated 252 Cf source 2 m away from the center of the detector face showed an average detection rate of 5.5 cps/ng with a standard deviation of 0.09 cps/ng over the four individual detector measurements. Measurements showed a gamma rejection ratio of 1.0 x 10 -8 , and gamma absolute rejection ratio (GARRn) of 0.93. The prototypes were also operated successfully onboard a moving vehicle for high-speed tests and a long-range 1433-mile, two-day road trip from Houston, TX, USA, to Laurel, MD, USA. Using auxiliary DARPA SIGMA equipment, the GPS, timestamp, gamma and neutron data were transmitted over the cellular network with 10 Hz resolution to a server and real-time tracking website. Mechanical impact and electrostatic discharge testing produced no spurious counts in either the neutron or gamma channels. Ambient environmental temperature testing showed less than ±1% response variation over the range from -30°C to +55°C.</description><subject>Batteries</subject><subject>Bluetooth</subject><subject>Boron</subject><subject>Cellular communication</subject><subject>Channels</subject><subject>Conditioning</subject><subject>Cost engineering</subject><subject>Counting</subject><subject>Detector instrumentation</subject><subject>Detectors</subject><subject>Electron tubes</subject><subject>Electronic devices</subject><subject>Electrostatic discharges</subject><subject>Energy consumption</subject><subject>Environmental testing</subject><subject>Face</subject><subject>Face recognition</subject><subject>Fuel consumption</subject><subject>Gamma-rays</subject><subject>High speed</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Neutrons</subject><subject>Noise</subject><subject>Onboard</subject><subject>Power consumption</subject><subject>Prototypes</subject><subject>radiation detectors</subject><subject>Real time</subject><subject>Rechargeable batteries</subject><subject>Rejection</subject><subject>Sensors</subject><subject>Straw</subject><subject>Temperature effects</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvB6zLz2qRpjmNOJ9Tt4PQa2vRl65jNTFNk_70dGx4ePx58v_fgI-Qe2BiAqafV4mMcM0jHcZoAF3BBBiBERkHI7JIMGIOMKq7UNblp222_csHEgKzywq-RTjwWoyh3v3Tq2jCK5vV6Q2fW1qbGxhyiBXbBuyZ6xoAmOB_Zfr5wU5sd0nfXNQGraLlHX4TaNbfkyha7Fu_OOSSfL7PVdE7z5evbdJJTEysIlDOuILOZSiwUrMIySUqJqVVJzMqK2T6yVPJCZlKlwipjqgIqwMQwKaQskyF5PN3de_fTYRv01nW-6V9qUKCEilnMe4qdKONd23q0eu_r78IfNDB9dKd7d_roTp_d9ZWHU6VGxH9cShErzpM_5-VpEg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Lacy, Jeffrey L.</creator><creator>Martin, Christopher S.</creator><creator>Athanasiades, Athanasios</creator><creator>Regmi, Murari</creator><creator>Vazquez-Flores, Gerson J.</creator><creator>Davenport, Stephen</creator><creator>King, Nicholas S.</creator><creator>Lyons, Tom</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4596-3228</orcidid></search><sort><creationdate>20170701</creationdate><title>Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation</title><author>Lacy, Jeffrey L. ; Martin, Christopher S. ; Athanasiades, Athanasios ; Regmi, Murari ; Vazquez-Flores, Gerson J. ; Davenport, Stephen ; King, Nicholas S. ; Lyons, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-404918f893f1a0deb33b7e6f9320bd0f3208674a787965f9ccda1d1e3c07577b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Bluetooth</topic><topic>Boron</topic><topic>Cellular communication</topic><topic>Channels</topic><topic>Conditioning</topic><topic>Cost engineering</topic><topic>Counting</topic><topic>Detector instrumentation</topic><topic>Detectors</topic><topic>Electron tubes</topic><topic>Electronic devices</topic><topic>Electrostatic discharges</topic><topic>Energy consumption</topic><topic>Environmental testing</topic><topic>Face</topic><topic>Face recognition</topic><topic>Fuel consumption</topic><topic>Gamma-rays</topic><topic>High speed</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Neutrons</topic><topic>Noise</topic><topic>Onboard</topic><topic>Power consumption</topic><topic>Prototypes</topic><topic>radiation detectors</topic><topic>Real time</topic><topic>Rechargeable batteries</topic><topic>Rejection</topic><topic>Sensors</topic><topic>Straw</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacy, Jeffrey L.</creatorcontrib><creatorcontrib>Martin, Christopher S.</creatorcontrib><creatorcontrib>Athanasiades, Athanasios</creatorcontrib><creatorcontrib>Regmi, Murari</creatorcontrib><creatorcontrib>Vazquez-Flores, Gerson J.</creatorcontrib><creatorcontrib>Davenport, Stephen</creatorcontrib><creatorcontrib>King, Nicholas S.</creatorcontrib><creatorcontrib>Lyons, Tom</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lacy, Jeffrey L.</au><au>Martin, Christopher S.</au><au>Athanasiades, Athanasios</au><au>Regmi, Murari</au><au>Vazquez-Flores, Gerson J.</au><au>Davenport, Stephen</au><au>King, Nicholas S.</au><au>Lyons, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>64</volume><issue>7</issue><spage>1696</spage><epage>1703</epage><pages>1696-1703</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>We have developed a large-area, low-cost, high-efficiency neutron detector for vehicle-mounted operation. The detector, which has overall dimensions 12.7 cm x 91.4 cm x 102 cm (5"x36"x40"), a sensitive area equal to 0.85 m 2 (1320 in 2 ), and weight of 110 kg (242 lbs), employs an array of 90 boron-coated straw (BCS) detectors. PTI has also developed electronics to minimize cost and space while providing low-noise signal conditioning for both neutron and gamma detection channels, as well as low energy Bluetooth communication with handheld devices. Extremely low power consumption allows continuous use for 225 hours (-.10 days) using three AAA lithium-ion rechargeable batteries. We present radiological, mechanical, and environmental tests, collected from four full-scale prototypes. Outdoor neutron-counting tests with a moderated 252 Cf source 2 m away from the center of the detector face showed an average detection rate of 5.5 cps/ng with a standard deviation of 0.09 cps/ng over the four individual detector measurements. Measurements showed a gamma rejection ratio of 1.0 x 10 -8 , and gamma absolute rejection ratio (GARRn) of 0.93. The prototypes were also operated successfully onboard a moving vehicle for high-speed tests and a long-range 1433-mile, two-day road trip from Houston, TX, USA, to Laurel, MD, USA. Using auxiliary DARPA SIGMA equipment, the GPS, timestamp, gamma and neutron data were transmitted over the cellular network with 10 Hz resolution to a server and real-time tracking website. Mechanical impact and electrostatic discharge testing produced no spurious counts in either the neutron or gamma channels. Ambient environmental temperature testing showed less than ±1% response variation over the range from -30°C to +55°C.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2016.2631451</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4596-3228</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2017-07, Vol.64 (7), p.1696-1703
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_1919592024
source IEEE Electronic Library (IEL)
subjects Batteries
Bluetooth
Boron
Cellular communication
Channels
Conditioning
Cost engineering
Counting
Detector instrumentation
Detectors
Electron tubes
Electronic devices
Electrostatic discharges
Energy consumption
Environmental testing
Face
Face recognition
Fuel consumption
Gamma-rays
High speed
Lithium
Lithium batteries
Neutrons
Noise
Onboard
Power consumption
Prototypes
radiation detectors
Real time
Rechargeable batteries
Rejection
Sensors
Straw
Temperature effects
title Large-Area, Low-Cost, High-Efficiency Neutron Detector for Vehicle-Mounted Operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Area,%20Low-Cost,%20High-Efficiency%20Neutron%20Detector%20for%20Vehicle-Mounted%20Operation&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Lacy,%20Jeffrey%20L.&rft.date=2017-07-01&rft.volume=64&rft.issue=7&rft.spage=1696&rft.epage=1703&rft.pages=1696-1703&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2016.2631451&rft_dat=%3Cproquest_RIE%3E1919592024%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919592024&rft_id=info:pmid/&rft_ieee_id=7752944&rfr_iscdi=true