pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions

•The implementation and validation of the PIC-DSMC code, pdFOAM, is presented.•Validation includes comparisons with MONACO and charging simulations.•New insights into the role of dCPD on LEO objects are demonstrated.•Bounded O+ ion jets are shown to cause a 4.4% increase in total dCPD.•Bounded H+ io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2017-06, Vol.149, p.160-171, Article 160
Hauptverfasser: Capon, C.J., Brown, M., White, C., Scanlon, T., Boyce, R.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 160
container_title Computers & fluids
container_volume 149
creator Capon, C.J.
Brown, M.
White, C.
Scanlon, T.
Boyce, R.R.
description •The implementation and validation of the PIC-DSMC code, pdFOAM, is presented.•Validation includes comparisons with MONACO and charging simulations.•New insights into the role of dCPD on LEO objects are demonstrated.•Bounded O+ ion jets are shown to cause a 4.4% increase in total dCPD.•Bounded H+ ion jets are shown to cause a 23.7% reduction in total dCPD. Understanding the interaction of the near-Earth space environment with orbiting bodies is critical, both from a design and scientific perspective. In Low Earth Orbit (LEO), the interaction between the Ionosphere and orbiting objects is well studied from a charging perspective. Not well understood is the effect of the Ionosphere on the motion of LEO objects i.e. ionospheric aerodynamics. This paper presents the implementation, validation, and verification of the hybrid electrostatic Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFOAM, to study both the neutral and charged particle aerodynamics of LEO objects. The 2D aerodynamic interaction of a cylinder with a fixed uniform surface potential of −50 V in mesothermal O+ and H+ plasmas representative of ionospheric conditions is investigated. New insights into the role of bounded ion jets and their effect on surface forces are presented. O+ bounded ion jets are observed to cause a 4.4% increase in direct Charged Particle Drag (dCPD), while H+ ion jets produce a net reduction in H+ dCPD by 23.7% i.e. they cause a thrust force. As a result, this paper concludes the study of charged aerodynamics in LEO requires a self-consistent modelling tool, such as pdFOAM.
doi_str_mv 10.1016/j.compfluid.2017.03.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919588455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793017301019</els_id><sourcerecordid>1919588455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d83d7d40e4f5f08f22718d7d203a340e59c3e9b00f505d2bd9bf5f402438df8a3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYMoOKefwYLPrTdJa1tBpNRNBxsT1OeQ5g-mdE1NOmHf3oyJD77o0-UezjmX-0PoEkOCAd9ct4mwm0F3WyMTAjhPgCZA4AhNcJGXMeRpfowmAGkW5yWFU3TmfQthpySdoPtBztfV6jaqoudFHT-8rOpIWKkibV3UK-7iGXfjezR03G943Fi5i0w_KsfFaGzvz9GJ5p1XF99zit7ms9f6KV6uHxd1tYwFLckYy4LKXKagUp1pKDQhOS6CQoByGuSsFFSVDYDOIJOkkWUTjCmQlBZSF5xO0dWhd3D2Y6v8yFq7dX04yXCJy6wo0iwLrvzgEs5675RmgzMb7nYMA9vTYi37ocX2tBhQFmiF5N2vpDAj3784Om66f-SrQ14FCJ9GOeaFUb1Q0jglRiat-bPjC_soigI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919588455</pqid></control><display><type>article</type><title>pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Capon, C.J. ; Brown, M. ; White, C. ; Scanlon, T. ; Boyce, R.R.</creator><creatorcontrib>Capon, C.J. ; Brown, M. ; White, C. ; Scanlon, T. ; Boyce, R.R.</creatorcontrib><description>•The implementation and validation of the PIC-DSMC code, pdFOAM, is presented.•Validation includes comparisons with MONACO and charging simulations.•New insights into the role of dCPD on LEO objects are demonstrated.•Bounded O+ ion jets are shown to cause a 4.4% increase in total dCPD.•Bounded H+ ion jets are shown to cause a 23.7% reduction in total dCPD. Understanding the interaction of the near-Earth space environment with orbiting bodies is critical, both from a design and scientific perspective. In Low Earth Orbit (LEO), the interaction between the Ionosphere and orbiting objects is well studied from a charging perspective. Not well understood is the effect of the Ionosphere on the motion of LEO objects i.e. ionospheric aerodynamics. This paper presents the implementation, validation, and verification of the hybrid electrostatic Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFOAM, to study both the neutral and charged particle aerodynamics of LEO objects. The 2D aerodynamic interaction of a cylinder with a fixed uniform surface potential of −50 V in mesothermal O+ and H+ plasmas representative of ionospheric conditions is investigated. New insights into the role of bounded ion jets and their effect on surface forces are presented. O+ bounded ion jets are observed to cause a 4.4% increase in direct Charged Particle Drag (dCPD), while H+ ion jets produce a net reduction in H+ dCPD by 23.7% i.e. they cause a thrust force. As a result, this paper concludes the study of charged aerodynamics in LEO requires a self-consistent modelling tool, such as pdFOAM.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2017.03.020</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Aerodynamics ; Aerospace environments ; Charged aerodynamics ; Charged particles ; Charging ; Computer simulation ; Cylinders ; Direct simulation Monte Carlo method ; Drag ; Ionosphere ; Jets ; Low earth orbits ; Object motion ; Particle in cell technique ; Plasmas (physics) ; Space situational awareness ; Spacecraft-environment interactions ; Thrust</subject><ispartof>Computers &amp; fluids, 2017-06, Vol.149, p.160-171, Article 160</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 13, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d83d7d40e4f5f08f22718d7d203a340e59c3e9b00f505d2bd9bf5f402438df8a3</citedby><cites>FETCH-LOGICAL-c392t-d83d7d40e4f5f08f22718d7d203a340e59c3e9b00f505d2bd9bf5f402438df8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2017.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Capon, C.J.</creatorcontrib><creatorcontrib>Brown, M.</creatorcontrib><creatorcontrib>White, C.</creatorcontrib><creatorcontrib>Scanlon, T.</creatorcontrib><creatorcontrib>Boyce, R.R.</creatorcontrib><title>pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions</title><title>Computers &amp; fluids</title><description>•The implementation and validation of the PIC-DSMC code, pdFOAM, is presented.•Validation includes comparisons with MONACO and charging simulations.•New insights into the role of dCPD on LEO objects are demonstrated.•Bounded O+ ion jets are shown to cause a 4.4% increase in total dCPD.•Bounded H+ ion jets are shown to cause a 23.7% reduction in total dCPD. Understanding the interaction of the near-Earth space environment with orbiting bodies is critical, both from a design and scientific perspective. In Low Earth Orbit (LEO), the interaction between the Ionosphere and orbiting objects is well studied from a charging perspective. Not well understood is the effect of the Ionosphere on the motion of LEO objects i.e. ionospheric aerodynamics. This paper presents the implementation, validation, and verification of the hybrid electrostatic Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFOAM, to study both the neutral and charged particle aerodynamics of LEO objects. The 2D aerodynamic interaction of a cylinder with a fixed uniform surface potential of −50 V in mesothermal O+ and H+ plasmas representative of ionospheric conditions is investigated. New insights into the role of bounded ion jets and their effect on surface forces are presented. O+ bounded ion jets are observed to cause a 4.4% increase in direct Charged Particle Drag (dCPD), while H+ ion jets produce a net reduction in H+ dCPD by 23.7% i.e. they cause a thrust force. As a result, this paper concludes the study of charged aerodynamics in LEO requires a self-consistent modelling tool, such as pdFOAM.</description><subject>Aerodynamics</subject><subject>Aerospace environments</subject><subject>Charged aerodynamics</subject><subject>Charged particles</subject><subject>Charging</subject><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Direct simulation Monte Carlo method</subject><subject>Drag</subject><subject>Ionosphere</subject><subject>Jets</subject><subject>Low earth orbits</subject><subject>Object motion</subject><subject>Particle in cell technique</subject><subject>Plasmas (physics)</subject><subject>Space situational awareness</subject><subject>Spacecraft-environment interactions</subject><subject>Thrust</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkF9LwzAUxYMoOKefwYLPrTdJa1tBpNRNBxsT1OeQ5g-mdE1NOmHf3oyJD77o0-UezjmX-0PoEkOCAd9ct4mwm0F3WyMTAjhPgCZA4AhNcJGXMeRpfowmAGkW5yWFU3TmfQthpySdoPtBztfV6jaqoudFHT-8rOpIWKkibV3UK-7iGXfjezR03G943Fi5i0w_KsfFaGzvz9GJ5p1XF99zit7ms9f6KV6uHxd1tYwFLckYy4LKXKagUp1pKDQhOS6CQoByGuSsFFSVDYDOIJOkkWUTjCmQlBZSF5xO0dWhd3D2Y6v8yFq7dX04yXCJy6wo0iwLrvzgEs5675RmgzMb7nYMA9vTYi37ocX2tBhQFmiF5N2vpDAj3784Om66f-SrQ14FCJ9GOeaFUb1Q0jglRiat-bPjC_soigI</recordid><startdate>20170613</startdate><enddate>20170613</enddate><creator>Capon, C.J.</creator><creator>Brown, M.</creator><creator>White, C.</creator><creator>Scanlon, T.</creator><creator>Boyce, R.R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170613</creationdate><title>pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions</title><author>Capon, C.J. ; Brown, M. ; White, C. ; Scanlon, T. ; Boyce, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d83d7d40e4f5f08f22718d7d203a340e59c3e9b00f505d2bd9bf5f402438df8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamics</topic><topic>Aerospace environments</topic><topic>Charged aerodynamics</topic><topic>Charged particles</topic><topic>Charging</topic><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Direct simulation Monte Carlo method</topic><topic>Drag</topic><topic>Ionosphere</topic><topic>Jets</topic><topic>Low earth orbits</topic><topic>Object motion</topic><topic>Particle in cell technique</topic><topic>Plasmas (physics)</topic><topic>Space situational awareness</topic><topic>Spacecraft-environment interactions</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capon, C.J.</creatorcontrib><creatorcontrib>Brown, M.</creatorcontrib><creatorcontrib>White, C.</creatorcontrib><creatorcontrib>Scanlon, T.</creatorcontrib><creatorcontrib>Boyce, R.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capon, C.J.</au><au>Brown, M.</au><au>White, C.</au><au>Scanlon, T.</au><au>Boyce, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions</atitle><jtitle>Computers &amp; fluids</jtitle><date>2017-06-13</date><risdate>2017</risdate><volume>149</volume><spage>160</spage><epage>171</epage><pages>160-171</pages><artnum>160</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•The implementation and validation of the PIC-DSMC code, pdFOAM, is presented.•Validation includes comparisons with MONACO and charging simulations.•New insights into the role of dCPD on LEO objects are demonstrated.•Bounded O+ ion jets are shown to cause a 4.4% increase in total dCPD.•Bounded H+ ion jets are shown to cause a 23.7% reduction in total dCPD. Understanding the interaction of the near-Earth space environment with orbiting bodies is critical, both from a design and scientific perspective. In Low Earth Orbit (LEO), the interaction between the Ionosphere and orbiting objects is well studied from a charging perspective. Not well understood is the effect of the Ionosphere on the motion of LEO objects i.e. ionospheric aerodynamics. This paper presents the implementation, validation, and verification of the hybrid electrostatic Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFOAM, to study both the neutral and charged particle aerodynamics of LEO objects. The 2D aerodynamic interaction of a cylinder with a fixed uniform surface potential of −50 V in mesothermal O+ and H+ plasmas representative of ionospheric conditions is investigated. New insights into the role of bounded ion jets and their effect on surface forces are presented. O+ bounded ion jets are observed to cause a 4.4% increase in direct Charged Particle Drag (dCPD), while H+ ion jets produce a net reduction in H+ dCPD by 23.7% i.e. they cause a thrust force. As a result, this paper concludes the study of charged aerodynamics in LEO requires a self-consistent modelling tool, such as pdFOAM.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2017.03.020</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2017-06, Vol.149, p.160-171, Article 160
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_1919588455
source ScienceDirect Journals (5 years ago - present)
subjects Aerodynamics
Aerospace environments
Charged aerodynamics
Charged particles
Charging
Computer simulation
Cylinders
Direct simulation Monte Carlo method
Drag
Ionosphere
Jets
Low earth orbits
Object motion
Particle in cell technique
Plasmas (physics)
Space situational awareness
Spacecraft-environment interactions
Thrust
title pdFOAM: A PIC-DSMC code for near-Earth plasma-body interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A20%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pdFOAM:%20A%20PIC-DSMC%20code%20for%20near-Earth%20plasma-body%20interactions&rft.jtitle=Computers%20&%20fluids&rft.au=Capon,%20C.J.&rft.date=2017-06-13&rft.volume=149&rft.spage=160&rft.epage=171&rft.pages=160-171&rft.artnum=160&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2017.03.020&rft_dat=%3Cproquest_cross%3E1919588455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919588455&rft_id=info:pmid/&rft_els_id=S0045793017301019&rfr_iscdi=true