Detection and classification of vehicles from omnidirectional videos using multiple silhouettes

To detect and classify vehicles in omnidirectional videos, we propose an approach based on the shape (silhouette) of the moving object obtained by background subtraction. Different from other shape-based classification techniques, we exploit the information available in multiple frames of the video....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2017-08, Vol.20 (3), p.893-905
Hauptverfasser: Karaimer, Hakki Can, Baris, Ipek, Bastanlar, Yalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 3
container_start_page 893
container_title Pattern analysis and applications : PAA
container_volume 20
creator Karaimer, Hakki Can
Baris, Ipek
Bastanlar, Yalin
description To detect and classify vehicles in omnidirectional videos, we propose an approach based on the shape (silhouette) of the moving object obtained by background subtraction. Different from other shape-based classification techniques, we exploit the information available in multiple frames of the video. We investigated two different approaches for this purpose. One is combining silhouettes extracted from a sequence of frames to create an average silhouette, the other is making individual decisions for all frames and use consensus of these decisions. Using multiple frames eliminates most of the wrong decisions which are caused by a poorly extracted silhouette from a single video frame. The vehicle types we classify are motorcycle, car (sedan) and van (minibus). The features extracted from the silhouettes are convexity, elongation, rectangularity and Hu moments. We applied two separate methods of classification. First one is a flowchart-based method that we developed and the second is K-nearest neighbour classification. 60% of the samples in the dataset are used for training. To ensure randomization in the experiments, threefold cross-validation is applied. The results indicate that using multiple silhouettes increases the classification performance.
doi_str_mv 10.1007/s10044-017-0593-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919129588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919129588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-529d563ee6463150a4fed4de8b2c89d4235af0a9444d470c6598c194e0adf3583</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9WkSfpxlPUTFrwoeAsxmexmaZs10y7or7drRbzIwMwwvO_L8BByztklZ6y8wrFLmTFeZkzVIvs8IDMuhchKpV4Pf3fJj8kJ4oYxIURezYi-gR5sH2JHTeeobQxi8MGa71P0dAfrYBtA6lNsaWy74EKaHKahu-AgIh0wdCvaDk0ftg1QDM06DtD3gKfkyJsG4exnzsnL3e3z4iFbPt0_Lq6XmRW86DOV104VAqCQheCKGenBSQfVW26r2slcKOOZqaWUTpbMFqquLK8lMOO8UJWYk4spd5vi-wDY600c0vgial6Pldeq2qv4pLIpIibweptCa9KH5kzvOeqJox456j1H_Tl68smDo7ZbQfqT_K_pC7vJd9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919129588</pqid></control><display><type>article</type><title>Detection and classification of vehicles from omnidirectional videos using multiple silhouettes</title><source>Springer Nature - Complete Springer Journals</source><creator>Karaimer, Hakki Can ; Baris, Ipek ; Bastanlar, Yalin</creator><creatorcontrib>Karaimer, Hakki Can ; Baris, Ipek ; Bastanlar, Yalin</creatorcontrib><description>To detect and classify vehicles in omnidirectional videos, we propose an approach based on the shape (silhouette) of the moving object obtained by background subtraction. Different from other shape-based classification techniques, we exploit the information available in multiple frames of the video. We investigated two different approaches for this purpose. One is combining silhouettes extracted from a sequence of frames to create an average silhouette, the other is making individual decisions for all frames and use consensus of these decisions. Using multiple frames eliminates most of the wrong decisions which are caused by a poorly extracted silhouette from a single video frame. The vehicle types we classify are motorcycle, car (sedan) and van (minibus). The features extracted from the silhouettes are convexity, elongation, rectangularity and Hu moments. We applied two separate methods of classification. First one is a flowchart-based method that we developed and the second is K-nearest neighbour classification. 60% of the samples in the dataset are used for training. To ensure randomization in the experiments, threefold cross-validation is applied. The results indicate that using multiple silhouettes increases the classification performance.</description><identifier>ISSN: 1433-7541</identifier><identifier>EISSN: 1433-755X</identifier><identifier>DOI: 10.1007/s10044-017-0593-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Automobiles ; Automotive engineering ; Classification ; Computer Science ; Convexity ; Decisions ; Elongation ; Feature extraction ; Flow charts ; Frames ; Industrial and Commercial Application ; K-nearest neighbors algorithm ; Pattern Recognition ; Randomization ; Subtraction ; Vehicles ; Video data</subject><ispartof>Pattern analysis and applications : PAA, 2017-08, Vol.20 (3), p.893-905</ispartof><rights>Springer-Verlag London 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-529d563ee6463150a4fed4de8b2c89d4235af0a9444d470c6598c194e0adf3583</citedby><cites>FETCH-LOGICAL-c316t-529d563ee6463150a4fed4de8b2c89d4235af0a9444d470c6598c194e0adf3583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10044-017-0593-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10044-017-0593-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Karaimer, Hakki Can</creatorcontrib><creatorcontrib>Baris, Ipek</creatorcontrib><creatorcontrib>Bastanlar, Yalin</creatorcontrib><title>Detection and classification of vehicles from omnidirectional videos using multiple silhouettes</title><title>Pattern analysis and applications : PAA</title><addtitle>Pattern Anal Applic</addtitle><description>To detect and classify vehicles in omnidirectional videos, we propose an approach based on the shape (silhouette) of the moving object obtained by background subtraction. Different from other shape-based classification techniques, we exploit the information available in multiple frames of the video. We investigated two different approaches for this purpose. One is combining silhouettes extracted from a sequence of frames to create an average silhouette, the other is making individual decisions for all frames and use consensus of these decisions. Using multiple frames eliminates most of the wrong decisions which are caused by a poorly extracted silhouette from a single video frame. The vehicle types we classify are motorcycle, car (sedan) and van (minibus). The features extracted from the silhouettes are convexity, elongation, rectangularity and Hu moments. We applied two separate methods of classification. First one is a flowchart-based method that we developed and the second is K-nearest neighbour classification. 60% of the samples in the dataset are used for training. To ensure randomization in the experiments, threefold cross-validation is applied. The results indicate that using multiple silhouettes increases the classification performance.</description><subject>Automobiles</subject><subject>Automotive engineering</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Convexity</subject><subject>Decisions</subject><subject>Elongation</subject><subject>Feature extraction</subject><subject>Flow charts</subject><subject>Frames</subject><subject>Industrial and Commercial Application</subject><subject>K-nearest neighbors algorithm</subject><subject>Pattern Recognition</subject><subject>Randomization</subject><subject>Subtraction</subject><subject>Vehicles</subject><subject>Video data</subject><issn>1433-7541</issn><issn>1433-755X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9WkSfpxlPUTFrwoeAsxmexmaZs10y7or7drRbzIwMwwvO_L8BByztklZ6y8wrFLmTFeZkzVIvs8IDMuhchKpV4Pf3fJj8kJ4oYxIURezYi-gR5sH2JHTeeobQxi8MGa71P0dAfrYBtA6lNsaWy74EKaHKahu-AgIh0wdCvaDk0ftg1QDM06DtD3gKfkyJsG4exnzsnL3e3z4iFbPt0_Lq6XmRW86DOV104VAqCQheCKGenBSQfVW26r2slcKOOZqaWUTpbMFqquLK8lMOO8UJWYk4spd5vi-wDY600c0vgial6Pldeq2qv4pLIpIibweptCa9KH5kzvOeqJox456j1H_Tl68smDo7ZbQfqT_K_pC7vJd9A</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Karaimer, Hakki Can</creator><creator>Baris, Ipek</creator><creator>Bastanlar, Yalin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Detection and classification of vehicles from omnidirectional videos using multiple silhouettes</title><author>Karaimer, Hakki Can ; Baris, Ipek ; Bastanlar, Yalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-529d563ee6463150a4fed4de8b2c89d4235af0a9444d470c6598c194e0adf3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automobiles</topic><topic>Automotive engineering</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Convexity</topic><topic>Decisions</topic><topic>Elongation</topic><topic>Feature extraction</topic><topic>Flow charts</topic><topic>Frames</topic><topic>Industrial and Commercial Application</topic><topic>K-nearest neighbors algorithm</topic><topic>Pattern Recognition</topic><topic>Randomization</topic><topic>Subtraction</topic><topic>Vehicles</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaimer, Hakki Can</creatorcontrib><creatorcontrib>Baris, Ipek</creatorcontrib><creatorcontrib>Bastanlar, Yalin</creatorcontrib><collection>CrossRef</collection><jtitle>Pattern analysis and applications : PAA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaimer, Hakki Can</au><au>Baris, Ipek</au><au>Bastanlar, Yalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and classification of vehicles from omnidirectional videos using multiple silhouettes</atitle><jtitle>Pattern analysis and applications : PAA</jtitle><stitle>Pattern Anal Applic</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>20</volume><issue>3</issue><spage>893</spage><epage>905</epage><pages>893-905</pages><issn>1433-7541</issn><eissn>1433-755X</eissn><abstract>To detect and classify vehicles in omnidirectional videos, we propose an approach based on the shape (silhouette) of the moving object obtained by background subtraction. Different from other shape-based classification techniques, we exploit the information available in multiple frames of the video. We investigated two different approaches for this purpose. One is combining silhouettes extracted from a sequence of frames to create an average silhouette, the other is making individual decisions for all frames and use consensus of these decisions. Using multiple frames eliminates most of the wrong decisions which are caused by a poorly extracted silhouette from a single video frame. The vehicle types we classify are motorcycle, car (sedan) and van (minibus). The features extracted from the silhouettes are convexity, elongation, rectangularity and Hu moments. We applied two separate methods of classification. First one is a flowchart-based method that we developed and the second is K-nearest neighbour classification. 60% of the samples in the dataset are used for training. To ensure randomization in the experiments, threefold cross-validation is applied. The results indicate that using multiple silhouettes increases the classification performance.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10044-017-0593-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-7541
ispartof Pattern analysis and applications : PAA, 2017-08, Vol.20 (3), p.893-905
issn 1433-7541
1433-755X
language eng
recordid cdi_proquest_journals_1919129588
source Springer Nature - Complete Springer Journals
subjects Automobiles
Automotive engineering
Classification
Computer Science
Convexity
Decisions
Elongation
Feature extraction
Flow charts
Frames
Industrial and Commercial Application
K-nearest neighbors algorithm
Pattern Recognition
Randomization
Subtraction
Vehicles
Video data
title Detection and classification of vehicles from omnidirectional videos using multiple silhouettes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A08%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20classification%20of%20vehicles%20from%20omnidirectional%20videos%20using%20multiple%20silhouettes&rft.jtitle=Pattern%20analysis%20and%20applications%20:%20PAA&rft.au=Karaimer,%20Hakki%20Can&rft.date=2017-08-01&rft.volume=20&rft.issue=3&rft.spage=893&rft.epage=905&rft.pages=893-905&rft.issn=1433-7541&rft.eissn=1433-755X&rft_id=info:doi/10.1007/s10044-017-0593-z&rft_dat=%3Cproquest_cross%3E1919129588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919129588&rft_id=info:pmid/&rfr_iscdi=true