Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space
Modular and norm inequalities are considered for positively homogeneous operators on the cone of all nonnegative functions and on the cone Ω of nonnegative decreasing functions from the weighted Orlicz space with a general weight and a general Young function. A reduction theorem is obtained for the...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2017-05, Vol.95 (3), p.214-217 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 3 |
container_start_page | 214 |
container_title | Doklady. Mathematics |
container_volume | 95 |
creator | Goldman, M. L. |
description | Modular and norm inequalities are considered for positively homogeneous operators on the cone of all nonnegative functions and on the cone Ω of nonnegative decreasing functions from the weighted Orlicz space with a general weight and a general Young function. A reduction theorem is obtained for the norm of an operator on Ω. This norm is shown to be equivalent to the norm of a modified operator on the cone of all nonnegative functions in the above Orlicz space. A similar theorem is obtained for modular inequalities. The results are based on the application of the principle of duality, which gives a description of the associated Orlicz norm for Ω. We also establish the equivalence of modular inequalities on the cone Ω and modified modular inequalities on the cone of all nonnegative functions in Orlicz space. In the general situation, the forms of these answers are substantially different from the descriptions obtained earlier by P. Drabek, A. Kufner, and H. Heinig under the assumption that the Young function and its complementary function satisfy Δ
2
-conditions. |
doi_str_mv | 10.1134/S1064562417030061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919129373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919129373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-16900749774c8f5e0c7fb8bd107ed4f1070fb32f303af8e8a734271745f440363</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZJm3aoyz-A2UP6rlk08napZt0k_agn94s60EQmcMbeO_3BoaxS4RrRCFvXhFKWZS5RAUCoMQjNsNCYFaJMj9Oe7KzvX_KzmLcAMgiB5ix5sW3U68D167lzoct7xztJt13Y0eRWx-4Hyjo0YfIvePjB3HjHXFveUsmkI6dW3M7OTN23sWE82XoO_PF46ANnbMTq_tIFz86Z-_3d2-Lx-x5-fC0uH3OjMByzLCsAZSslZKmsgWBUXZVrVoERa20ScCuRG4FCG0rqrQSMleoZGGlBFGKObs69A7B7yaKY7PxU3DpZIN1mrwWSqQUHlIm-BgD2WYI3VaHzwah2f-x-fPHxOQHJqasW1P41fwv9A0DbXOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919129373</pqid></control><display><type>article</type><title>Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space</title><source>Springer Nature - Complete Springer Journals</source><creator>Goldman, M. L.</creator><creatorcontrib>Goldman, M. L.</creatorcontrib><description>Modular and norm inequalities are considered for positively homogeneous operators on the cone of all nonnegative functions and on the cone Ω of nonnegative decreasing functions from the weighted Orlicz space with a general weight and a general Young function. A reduction theorem is obtained for the norm of an operator on Ω. This norm is shown to be equivalent to the norm of a modified operator on the cone of all nonnegative functions in the above Orlicz space. A similar theorem is obtained for modular inequalities. The results are based on the application of the principle of duality, which gives a description of the associated Orlicz norm for Ω. We also establish the equivalence of modular inequalities on the cone Ω and modified modular inequalities on the cone of all nonnegative functions in Orlicz space. In the general situation, the forms of these answers are substantially different from the descriptions obtained earlier by P. Drabek, A. Kufner, and H. Heinig under the assumption that the Young function and its complementary function satisfy Δ
2
-conditions.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562417030061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Economic impact ; Equivalence ; Inequalities ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Orlicz space ; Weight reduction</subject><ispartof>Doklady. Mathematics, 2017-05, Vol.95 (3), p.214-217</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-16900749774c8f5e0c7fb8bd107ed4f1070fb32f303af8e8a734271745f440363</citedby><cites>FETCH-LOGICAL-c316t-16900749774c8f5e0c7fb8bd107ed4f1070fb32f303af8e8a734271745f440363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562417030061$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562417030061$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Goldman, M. L.</creatorcontrib><title>Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Modular and norm inequalities are considered for positively homogeneous operators on the cone of all nonnegative functions and on the cone Ω of nonnegative decreasing functions from the weighted Orlicz space with a general weight and a general Young function. A reduction theorem is obtained for the norm of an operator on Ω. This norm is shown to be equivalent to the norm of a modified operator on the cone of all nonnegative functions in the above Orlicz space. A similar theorem is obtained for modular inequalities. The results are based on the application of the principle of duality, which gives a description of the associated Orlicz norm for Ω. We also establish the equivalence of modular inequalities on the cone Ω and modified modular inequalities on the cone of all nonnegative functions in Orlicz space. In the general situation, the forms of these answers are substantially different from the descriptions obtained earlier by P. Drabek, A. Kufner, and H. Heinig under the assumption that the Young function and its complementary function satisfy Δ
2
-conditions.</description><subject>Economic impact</subject><subject>Equivalence</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Orlicz space</subject><subject>Weight reduction</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZJm3aoyz-A2UP6rlk08napZt0k_agn94s60EQmcMbeO_3BoaxS4RrRCFvXhFKWZS5RAUCoMQjNsNCYFaJMj9Oe7KzvX_KzmLcAMgiB5ix5sW3U68D167lzoct7xztJt13Y0eRWx-4Hyjo0YfIvePjB3HjHXFveUsmkI6dW3M7OTN23sWE82XoO_PF46ANnbMTq_tIFz86Z-_3d2-Lx-x5-fC0uH3OjMByzLCsAZSslZKmsgWBUXZVrVoERa20ScCuRG4FCG0rqrQSMleoZGGlBFGKObs69A7B7yaKY7PxU3DpZIN1mrwWSqQUHlIm-BgD2WYI3VaHzwah2f-x-fPHxOQHJqasW1P41fwv9A0DbXOY</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Goldman, M. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space</title><author>Goldman, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-16900749774c8f5e0c7fb8bd107ed4f1070fb32f303af8e8a734271745f440363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Economic impact</topic><topic>Equivalence</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Orlicz space</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, M. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>95</volume><issue>3</issue><spage>214</spage><epage>217</epage><pages>214-217</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Modular and norm inequalities are considered for positively homogeneous operators on the cone of all nonnegative functions and on the cone Ω of nonnegative decreasing functions from the weighted Orlicz space with a general weight and a general Young function. A reduction theorem is obtained for the norm of an operator on Ω. This norm is shown to be equivalent to the norm of a modified operator on the cone of all nonnegative functions in the above Orlicz space. A similar theorem is obtained for modular inequalities. The results are based on the application of the principle of duality, which gives a description of the associated Orlicz norm for Ω. We also establish the equivalence of modular inequalities on the cone Ω and modified modular inequalities on the cone of all nonnegative functions in Orlicz space. In the general situation, the forms of these answers are substantially different from the descriptions obtained earlier by P. Drabek, A. Kufner, and H. Heinig under the assumption that the Young function and its complementary function satisfy Δ
2
-conditions.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562417030061</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2017-05, Vol.95 (3), p.214-217 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_1919129373 |
source | Springer Nature - Complete Springer Journals |
subjects | Economic impact Equivalence Inequalities Mathematics Mathematics and Statistics Operators (mathematics) Orlicz space Weight reduction |
title | Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20and%20norm%20inequalities%20for%20operators%20on%20the%20cone%20of%20decreasing%20functions%20in%20Orlicz%20space&rft.jtitle=Doklady.%20Mathematics&rft.au=Goldman,%20M.%20L.&rft.date=2017-05-01&rft.volume=95&rft.issue=3&rft.spage=214&rft.epage=217&rft.pages=214-217&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562417030061&rft_dat=%3Cproquest_cross%3E1919129373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919129373&rft_id=info:pmid/&rfr_iscdi=true |