Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption

We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-09, Vol.65 (18), p.4717-4731
Hauptverfasser: Zhaoqiang Liu, Tan, Vincent Y. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4731
container_issue 18
container_start_page 4717
container_title IEEE transactions on signal processing
container_volume 65
creator Zhaoqiang Liu
Tan, Vincent Y. F.
description We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.
doi_str_mv 10.1109/TSP.2017.2713761
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1919015108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944595</ieee_id><sourcerecordid>1919015108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6k72Y90j21pa6FaqS14i5vNBFLbTd1NBP3rTah4muHNe_PgR8gtsAEA0w-b15dBzCAZxAnwRMEZ6YEWEDGRqPN2Z5JHcpi8XZKrEHaMgRBa9cj72riPaOWQPj_NorEJmNOFK-vS7MsfU5eVo0XluyM1Lqdr3LfiF9Kp9608rhqXB7p1OXpq6ByrA9a-tHQUQnM4dvFrclGYfcCbv9kn29l0M3mMlqv5YjJaRjbWUEcy48pyAdZopSHDGBIjlGVouMwyq3OpuYqVUKANNzweItMFDosY8gytHfI-uT_9Pfrqs8FQp7uq8a6tTEGDZiCBdS52cllfheCxSI--PBj_nQJLO45pyzHtOKZ_HNvI3SlSIuK_PdFCSC35L_Pqbc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919015108</pqid></control><display><type>article</type><title>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</title><source>IEEE Electronic Library (IEL)</source><creator>Zhaoqiang Liu ; Tan, Vincent Y. F.</creator><creatorcontrib>Zhaoqiang Liu ; Tan, Vincent Y. F.</creatorcontrib><description>We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2713761</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Approximation algorithms ; clusterability ; Clustering ; Clustering algorithms ; Datasets ; Factorization ; Hyperspectral imaging ; initialization ; Matrices (mathematics) ; Matrix decomposition ; model selection ; Nonnegative matrix factorization ; Probabilistic methods ; Probability theory ; Radio frequency ; relative error bound ; separability ; Signal processing algorithms ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4717-4731</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</citedby><cites>FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhaoqiang Liu</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><title>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>clusterability</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Datasets</subject><subject>Factorization</subject><subject>Hyperspectral imaging</subject><subject>initialization</subject><subject>Matrices (mathematics)</subject><subject>Matrix decomposition</subject><subject>model selection</subject><subject>Nonnegative matrix factorization</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Radio frequency</subject><subject>relative error bound</subject><subject>separability</subject><subject>Signal processing algorithms</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6k72Y90j21pa6FaqS14i5vNBFLbTd1NBP3rTah4muHNe_PgR8gtsAEA0w-b15dBzCAZxAnwRMEZ6YEWEDGRqPN2Z5JHcpi8XZKrEHaMgRBa9cj72riPaOWQPj_NorEJmNOFK-vS7MsfU5eVo0XluyM1Lqdr3LfiF9Kp9608rhqXB7p1OXpq6ByrA9a-tHQUQnM4dvFrclGYfcCbv9kn29l0M3mMlqv5YjJaRjbWUEcy48pyAdZopSHDGBIjlGVouMwyq3OpuYqVUKANNzweItMFDosY8gytHfI-uT_9Pfrqs8FQp7uq8a6tTEGDZiCBdS52cllfheCxSI--PBj_nQJLO45pyzHtOKZ_HNvI3SlSIuK_PdFCSC35L_Pqbc4</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Zhaoqiang Liu</creator><creator>Tan, Vincent Y. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170915</creationdate><title>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</title><author>Zhaoqiang Liu ; Tan, Vincent Y. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>clusterability</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Datasets</topic><topic>Factorization</topic><topic>Hyperspectral imaging</topic><topic>initialization</topic><topic>Matrices (mathematics)</topic><topic>Matrix decomposition</topic><topic>model selection</topic><topic>Nonnegative matrix factorization</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Radio frequency</topic><topic>relative error bound</topic><topic>separability</topic><topic>Signal processing algorithms</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhaoqiang Liu</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhaoqiang Liu</au><au>Tan, Vincent Y. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-09-15</date><risdate>2017</risdate><volume>65</volume><issue>18</issue><spage>4717</spage><epage>4731</epage><pages>4717-4731</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2713761</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4717-4731
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_1919015108
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Approximation algorithms
clusterability
Clustering
Clustering algorithms
Datasets
Factorization
Hyperspectral imaging
initialization
Matrices (mathematics)
Matrix decomposition
model selection
Nonnegative matrix factorization
Probabilistic methods
Probability theory
Radio frequency
relative error bound
separability
Signal processing algorithms
Upper bound
Upper bounds
title Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank-One%20NMF-Based%20Initialization%20for%20NMF%20and%20Relative%20Error%20Bounds%20Under%20a%20Geometric%20Assumption&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhaoqiang%20Liu&rft.date=2017-09-15&rft.volume=65&rft.issue=18&rft.spage=4717&rft.epage=4731&rft.pages=4717-4731&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2713761&rft_dat=%3Cproquest_RIE%3E1919015108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919015108&rft_id=info:pmid/&rft_ieee_id=7944595&rfr_iscdi=true