Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption
We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-09, Vol.65 (18), p.4717-4731 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4731 |
---|---|
container_issue | 18 |
container_start_page | 4717 |
container_title | IEEE transactions on signal processing |
container_volume | 65 |
creator | Zhaoqiang Liu Tan, Vincent Y. F. |
description | We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance. |
doi_str_mv | 10.1109/TSP.2017.2713761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1919015108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944595</ieee_id><sourcerecordid>1919015108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6k72Y90j21pa6FaqS14i5vNBFLbTd1NBP3rTah4muHNe_PgR8gtsAEA0w-b15dBzCAZxAnwRMEZ6YEWEDGRqPN2Z5JHcpi8XZKrEHaMgRBa9cj72riPaOWQPj_NorEJmNOFK-vS7MsfU5eVo0XluyM1Lqdr3LfiF9Kp9608rhqXB7p1OXpq6ByrA9a-tHQUQnM4dvFrclGYfcCbv9kn29l0M3mMlqv5YjJaRjbWUEcy48pyAdZopSHDGBIjlGVouMwyq3OpuYqVUKANNzweItMFDosY8gytHfI-uT_9Pfrqs8FQp7uq8a6tTEGDZiCBdS52cllfheCxSI--PBj_nQJLO45pyzHtOKZ_HNvI3SlSIuK_PdFCSC35L_Pqbc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919015108</pqid></control><display><type>article</type><title>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</title><source>IEEE Electronic Library (IEL)</source><creator>Zhaoqiang Liu ; Tan, Vincent Y. F.</creator><creatorcontrib>Zhaoqiang Liu ; Tan, Vincent Y. F.</creatorcontrib><description>We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2713761</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Approximation algorithms ; clusterability ; Clustering ; Clustering algorithms ; Datasets ; Factorization ; Hyperspectral imaging ; initialization ; Matrices (mathematics) ; Matrix decomposition ; model selection ; Nonnegative matrix factorization ; Probabilistic methods ; Probability theory ; Radio frequency ; relative error bound ; separability ; Signal processing algorithms ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4717-4731</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</citedby><cites>FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhaoqiang Liu</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><title>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>clusterability</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Datasets</subject><subject>Factorization</subject><subject>Hyperspectral imaging</subject><subject>initialization</subject><subject>Matrices (mathematics)</subject><subject>Matrix decomposition</subject><subject>model selection</subject><subject>Nonnegative matrix factorization</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Radio frequency</subject><subject>relative error bound</subject><subject>separability</subject><subject>Signal processing algorithms</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6k72Y90j21pa6FaqS14i5vNBFLbTd1NBP3rTah4muHNe_PgR8gtsAEA0w-b15dBzCAZxAnwRMEZ6YEWEDGRqPN2Z5JHcpi8XZKrEHaMgRBa9cj72riPaOWQPj_NorEJmNOFK-vS7MsfU5eVo0XluyM1Lqdr3LfiF9Kp9608rhqXB7p1OXpq6ByrA9a-tHQUQnM4dvFrclGYfcCbv9kn29l0M3mMlqv5YjJaRjbWUEcy48pyAdZopSHDGBIjlGVouMwyq3OpuYqVUKANNzweItMFDosY8gytHfI-uT_9Pfrqs8FQp7uq8a6tTEGDZiCBdS52cllfheCxSI--PBj_nQJLO45pyzHtOKZ_HNvI3SlSIuK_PdFCSC35L_Pqbc4</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Zhaoqiang Liu</creator><creator>Tan, Vincent Y. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170915</creationdate><title>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</title><author>Zhaoqiang Liu ; Tan, Vincent Y. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5b36c341ca9691be217a46c0ea35bbc9d5936264619a3a328e09fe8f21dbecc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>clusterability</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Datasets</topic><topic>Factorization</topic><topic>Hyperspectral imaging</topic><topic>initialization</topic><topic>Matrices (mathematics)</topic><topic>Matrix decomposition</topic><topic>model selection</topic><topic>Nonnegative matrix factorization</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Radio frequency</topic><topic>relative error bound</topic><topic>separability</topic><topic>Signal processing algorithms</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhaoqiang Liu</creatorcontrib><creatorcontrib>Tan, Vincent Y. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhaoqiang Liu</au><au>Tan, Vincent Y. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-09-15</date><risdate>2017</risdate><volume>65</volume><issue>18</issue><spage>4717</spage><epage>4731</epage><pages>4717-4731</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose a geometric assumption on nonnegative data matrices such that under this assumption, we are able to provide upper bounds (both deterministic and probabilistic) on the relative error of nonnegative matrix factorization (NMF). The algorithm we propose first uses the geometric assumption to obtain an exact clustering of the columns of the data matrix; subsequently, it employs several rank-one NMFs to obtain the final decomposition. When applied to data matrices generated from our statistical model, we observe that our proposed algorithm produces factor matrices with comparable relative errors vis-à-vis classical NMF algorithms but with much faster speeds. On face image and hyperspectral imaging datasets, we demonstrate that our algorithm provides an excellent initialization for applying other NMF algorithms at a low computational cost. Finally, we show on face and text datasets that the combinations of our algorithm and several classical NMF algorithms outperform other algorithms in terms of clustering performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2713761</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4717-4731 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_1919015108 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Approximation algorithms clusterability Clustering Clustering algorithms Datasets Factorization Hyperspectral imaging initialization Matrices (mathematics) Matrix decomposition model selection Nonnegative matrix factorization Probabilistic methods Probability theory Radio frequency relative error bound separability Signal processing algorithms Upper bound Upper bounds |
title | Rank-One NMF-Based Initialization for NMF and Relative Error Bounds Under a Geometric Assumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank-One%20NMF-Based%20Initialization%20for%20NMF%20and%20Relative%20Error%20Bounds%20Under%20a%20Geometric%20Assumption&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhaoqiang%20Liu&rft.date=2017-09-15&rft.volume=65&rft.issue=18&rft.spage=4717&rft.epage=4731&rft.pages=4717-4731&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2713761&rft_dat=%3Cproquest_RIE%3E1919015108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919015108&rft_id=info:pmid/&rft_ieee_id=7944595&rfr_iscdi=true |