Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation

The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissocia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2017-07, Vol.21 (7), p.1847-1859
1. Verfasser: Scholz, Fritz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1859
container_issue 7
container_start_page 1847
container_title Journal of solid state electrochemistry
container_volume 21
creator Scholz, Fritz
description The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.
doi_str_mv 10.1007/s10008-017-3619-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1918881892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1918881892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaWWBs8cerYS1TxJ1V0U4ml5STjNlWatHYC6o5rcD1OgtuwYMNmZjTzvTfSI-Qa-C1wnt2FWLliHDImJGi2PyEjSIVgPJPq9DgnTKVKnZOLENY8ghL4iMzeqnqF9YbOQ_dh6_L78ytQ39ZIq4Z2K6RLbDBUgdqmpPje1n1XtQ1t3fH4ir4JHcVdbw_rS3LmbB3w6rePyeLxYTF9ZrP508v0fsYKoZKOARc5TqTCycSmIlMZFjaXiS5TYZ0WBYDInE2ckyLRiICQS5drrkuVgUIxJjeD7da3ux5DZ9Zt75v40YAGpRQonUQKBqrwbQgendn6amP93gA3h8zMkJmJUZhDZmYfNcmgCZFtluj_OP8r-gHL_nBH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918881892</pqid></control><display><type>article</type><title>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</title><source>SpringerLink Journals</source><creator>Scholz, Fritz</creator><creatorcontrib>Scholz, Fritz</creatorcontrib><description>The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-017-3619-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrolytic cells ; Energy Storage ; Evolution ; Osmosis ; Ostwald ripening ; Oxidation ; Physical Chemistry ; Review ; Thermodynamics</subject><ispartof>Journal of solid state electrochemistry, 2017-07, Vol.21 (7), p.1847-1859</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</citedby><cites>FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-017-3619-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-017-3619-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Scholz, Fritz</creatorcontrib><title>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy Storage</subject><subject>Evolution</subject><subject>Osmosis</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Review</subject><subject>Thermodynamics</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaWWBs8cerYS1TxJ1V0U4ml5STjNlWatHYC6o5rcD1OgtuwYMNmZjTzvTfSI-Qa-C1wnt2FWLliHDImJGi2PyEjSIVgPJPq9DgnTKVKnZOLENY8ghL4iMzeqnqF9YbOQ_dh6_L78ytQ39ZIq4Z2K6RLbDBUgdqmpPje1n1XtQ1t3fH4ir4JHcVdbw_rS3LmbB3w6rePyeLxYTF9ZrP508v0fsYKoZKOARc5TqTCycSmIlMZFjaXiS5TYZ0WBYDInE2ckyLRiICQS5drrkuVgUIxJjeD7da3ux5DZ9Zt75v40YAGpRQonUQKBqrwbQgendn6amP93gA3h8zMkJmJUZhDZmYfNcmgCZFtluj_OP8r-gHL_nBH</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Scholz, Fritz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</title><author>Scholz, Fritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy Storage</topic><topic>Evolution</topic><topic>Osmosis</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Review</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholz, Fritz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholz, Fritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>21</volume><issue>7</issue><spage>1847</spage><epage>1859</epage><pages>1847-1859</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-017-3619-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2017-07, Vol.21 (7), p.1847-1859
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_1918881892
source SpringerLink Journals
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Electrolytic cells
Energy Storage
Evolution
Osmosis
Ostwald ripening
Oxidation
Physical Chemistry
Review
Thermodynamics
title Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wilhelm%20Ostwald%E2%80%99s%20role%20in%20the%20genesis%20and%20evolution%20of%20the%20Nernst%20equation&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Scholz,%20Fritz&rft.date=2017-07-01&rft.volume=21&rft.issue=7&rft.spage=1847&rft.epage=1859&rft.pages=1847-1859&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-017-3619-y&rft_dat=%3Cproquest_cross%3E1918881892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918881892&rft_id=info:pmid/&rfr_iscdi=true