Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation
The historical origin of the Nernst equation can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissocia...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2017-07, Vol.21 (7), p.1847-1859 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1859 |
---|---|
container_issue | 7 |
container_start_page | 1847 |
container_title | Journal of solid state electrochemistry |
container_volume | 21 |
creator | Scholz, Fritz |
description | The historical origin of the
Nernst equation
can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions. |
doi_str_mv | 10.1007/s10008-017-3619-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1918881892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1918881892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaWWBs8cerYS1TxJ1V0U4ml5STjNlWatHYC6o5rcD1OgtuwYMNmZjTzvTfSI-Qa-C1wnt2FWLliHDImJGi2PyEjSIVgPJPq9DgnTKVKnZOLENY8ghL4iMzeqnqF9YbOQ_dh6_L78ytQ39ZIq4Z2K6RLbDBUgdqmpPje1n1XtQ1t3fH4ir4JHcVdbw_rS3LmbB3w6rePyeLxYTF9ZrP508v0fsYKoZKOARc5TqTCycSmIlMZFjaXiS5TYZ0WBYDInE2ckyLRiICQS5drrkuVgUIxJjeD7da3ux5DZ9Zt75v40YAGpRQonUQKBqrwbQgendn6amP93gA3h8zMkJmJUZhDZmYfNcmgCZFtluj_OP8r-gHL_nBH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918881892</pqid></control><display><type>article</type><title>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</title><source>SpringerLink Journals</source><creator>Scholz, Fritz</creator><creatorcontrib>Scholz, Fritz</creatorcontrib><description>The historical origin of the
Nernst equation
can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-017-3619-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Electrolytic cells ; Energy Storage ; Evolution ; Osmosis ; Ostwald ripening ; Oxidation ; Physical Chemistry ; Review ; Thermodynamics</subject><ispartof>Journal of solid state electrochemistry, 2017-07, Vol.21 (7), p.1847-1859</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</citedby><cites>FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-017-3619-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-017-3619-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Scholz, Fritz</creatorcontrib><title>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>The historical origin of the
Nernst equation
can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy Storage</subject><subject>Evolution</subject><subject>Osmosis</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Review</subject><subject>Thermodynamics</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaWWBs8cerYS1TxJ1V0U4ml5STjNlWatHYC6o5rcD1OgtuwYMNmZjTzvTfSI-Qa-C1wnt2FWLliHDImJGi2PyEjSIVgPJPq9DgnTKVKnZOLENY8ghL4iMzeqnqF9YbOQ_dh6_L78ytQ39ZIq4Z2K6RLbDBUgdqmpPje1n1XtQ1t3fH4ir4JHcVdbw_rS3LmbB3w6rePyeLxYTF9ZrP508v0fsYKoZKOARc5TqTCycSmIlMZFjaXiS5TYZ0WBYDInE2ckyLRiICQS5drrkuVgUIxJjeD7da3ux5DZ9Zt75v40YAGpRQonUQKBqrwbQgendn6amP93gA3h8zMkJmJUZhDZmYfNcmgCZFtluj_OP8r-gHL_nBH</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Scholz, Fritz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</title><author>Scholz, Fritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-103be568e55a43787ecab629d43af93c1137fa2ff6329ee1e1b6fb909d8718e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy Storage</topic><topic>Evolution</topic><topic>Osmosis</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Review</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholz, Fritz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholz, Fritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>21</volume><issue>7</issue><spage>1847</spage><epage>1859</epage><pages>1847-1859</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>The historical origin of the
Nernst equation
can be traced back to Helmholtz’ treatment of the thermodynamics of galvanic cells and to Gibbs’ masterwork “On the Equilibrium of Heterogeneous Substances”. However, Nernst himself used a model of the metal/solution interface based on Arrhenius’ dissociation theory, together with some aspects of van’t Hoff’s osmotic pressure theory. Bancroft performed some initial studies of redox chains (cells) in Ostwald’s laboratory. Peters has advanced these studies and published an equation correctly describing the potential of an inert electrode in a solution containing a dissolved reversible redox pair. Riesenfeld has treated interfaces of immiscible electrolyte solutions and the partition equilibria of ions. Luther has shown how standard potentials of elements possessing several redox states are related. Fredenhagen was the first to understand that the series of standard potentials are solvent dependent. Nernst, Bancroft, Peters, Luther and Fredenhagen were pupils of Ostwald; Riesenfeld and Fredenhagen were students of Nernst. Indeed, the presiding genius of the whole endeavour was clearly Friedrich Wilhelm Ostwald. This new survey of the genesis and evolution of what we now call Nernst equation reveals the influence of Ostwald’s ideas on the theorizing process, and it is concluded that his share in the development of the modern theory deserves greater recognitions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-017-3619-y</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2017-07, Vol.21 (7), p.1847-1859 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_1918881892 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemistry Electrolytic cells Energy Storage Evolution Osmosis Ostwald ripening Oxidation Physical Chemistry Review Thermodynamics |
title | Wilhelm Ostwald’s role in the genesis and evolution of the Nernst equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wilhelm%20Ostwald%E2%80%99s%20role%20in%20the%20genesis%20and%20evolution%20of%20the%20Nernst%20equation&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Scholz,%20Fritz&rft.date=2017-07-01&rft.volume=21&rft.issue=7&rft.spage=1847&rft.epage=1859&rft.pages=1847-1859&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-017-3619-y&rft_dat=%3Cproquest_cross%3E1918881892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918881892&rft_id=info:pmid/&rfr_iscdi=true |