Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach
In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2017-08, Vol.21 (4), p.645-663 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 4 |
container_start_page | 645 |
container_title | Computational geosciences |
container_volume | 21 |
creator | Insuasty, Edwin Van den Hof, Paul M. J. Weiland, Siep Jansen, Jan-Dirk |
description | In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow patterns under a particular operational strategy. To this end, a spatial-temporal tensor representation of the reservoir flow patterns is used, while retaining the spatial structure of the flow variables. This allows reduced-order tensor representations of the dominating patterns and simple computation of a flow-induced dissimilarity measure between models. The developed tensor techniques are applied to cluster model realizations in an ensemble, based on similarity of flow characteristics. |
doi_str_mv | 10.1007/s10596-017-9641-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1918796332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1918796332</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-2693fa22388756716418c9372e8bee812f0052d14ed085548df1b1169e1b5be3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMRt8dhLbbKiigFSJpROL5TQXSJU0wZeC-u9xFQYWpnfD9947PcauQd6ClOaOQOauEBKMcEUGIjthM8iNFpA5d5ruTEmREHPOLoi2UkpnNMzY27Ltv0UZCCteNURN17QhNuOBdxhoH5F43UeeFONX30Te9RW2dM8DpyGMTWjFiN3Qx9DyEXeU2DAMsQ-bj0t2VoeW8OpX52y9fFwvnsXq9ell8bASQVs1ClU4XQeltLUmLwyk7-3GaaPQlogWVC1lrirIsJI2zzNb1VACFA6hzEvUc3YzxabWzz3S6Lf9Pu5SowcH1rhCa5UomKhN7Iki1n6ITRfiwYP0xwX9tKBPC_rjgj5LHjV5KLG7d4x_kv81_QAEJ3O7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918796332</pqid></control><display><type>article</type><title>Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Insuasty, Edwin ; Van den Hof, Paul M. J. ; Weiland, Siep ; Jansen, Jan-Dirk</creator><creatorcontrib>Insuasty, Edwin ; Van den Hof, Paul M. J. ; Weiland, Siep ; Jansen, Jan-Dirk</creatorcontrib><description>In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow patterns under a particular operational strategy. To this end, a spatial-temporal tensor representation of the reservoir flow patterns is used, while retaining the spatial structure of the flow variables. This allows reduced-order tensor representations of the dominating patterns and simple computation of a flow-induced dissimilarity measure between models. The developed tensor techniques are applied to cluster model realizations in an ensemble, based on similarity of flow characteristics.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-017-9641-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Computation ; Earth and Environmental Science ; Earth Sciences ; Economic models ; Flow characteristics ; Flow pattern ; Geological structures ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Mathematical Modeling and Industrial Mathematics ; Model reduction ; Original Paper ; Representations ; Reservoir engineering ; Reservoirs ; Similarity ; Soil Science & Conservation</subject><ispartof>Computational geosciences, 2017-08, Vol.21 (4), p.645-663</ispartof><rights>The Author(s) 2017</rights><rights>Computational Geosciences is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-2693fa22388756716418c9372e8bee812f0052d14ed085548df1b1169e1b5be3</citedby><cites>FETCH-LOGICAL-a382t-2693fa22388756716418c9372e8bee812f0052d14ed085548df1b1169e1b5be3</cites><orcidid>0000-0003-2114-9739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-017-9641-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-017-9641-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Insuasty, Edwin</creatorcontrib><creatorcontrib>Van den Hof, Paul M. J.</creatorcontrib><creatorcontrib>Weiland, Siep</creatorcontrib><creatorcontrib>Jansen, Jan-Dirk</creatorcontrib><title>Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow patterns under a particular operational strategy. To this end, a spatial-temporal tensor representation of the reservoir flow patterns is used, while retaining the spatial structure of the flow variables. This allows reduced-order tensor representations of the dominating patterns and simple computation of a flow-induced dissimilarity measure between models. The developed tensor techniques are applied to cluster model realizations in an ensemble, based on similarity of flow characteristics.</description><subject>Computation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Economic models</subject><subject>Flow characteristics</subject><subject>Flow pattern</subject><subject>Geological structures</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Model reduction</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Reservoir engineering</subject><subject>Reservoirs</subject><subject>Similarity</subject><subject>Soil Science & Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMRt8dhLbbKiigFSJpROL5TQXSJU0wZeC-u9xFQYWpnfD9947PcauQd6ClOaOQOauEBKMcEUGIjthM8iNFpA5d5ruTEmREHPOLoi2UkpnNMzY27Ltv0UZCCteNURN17QhNuOBdxhoH5F43UeeFONX30Te9RW2dM8DpyGMTWjFiN3Qx9DyEXeU2DAMsQ-bj0t2VoeW8OpX52y9fFwvnsXq9ell8bASQVs1ClU4XQeltLUmLwyk7-3GaaPQlogWVC1lrirIsJI2zzNb1VACFA6hzEvUc3YzxabWzz3S6Lf9Pu5SowcH1rhCa5UomKhN7Iki1n6ITRfiwYP0xwX9tKBPC_rjgj5LHjV5KLG7d4x_kv81_QAEJ3O7</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Insuasty, Edwin</creator><creator>Van den Hof, Paul M. J.</creator><creator>Weiland, Siep</creator><creator>Jansen, Jan-Dirk</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2114-9739</orcidid></search><sort><creationdate>20170801</creationdate><title>Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach</title><author>Insuasty, Edwin ; Van den Hof, Paul M. J. ; Weiland, Siep ; Jansen, Jan-Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-2693fa22388756716418c9372e8bee812f0052d14ed085548df1b1169e1b5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Economic models</topic><topic>Flow characteristics</topic><topic>Flow pattern</topic><topic>Geological structures</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Model reduction</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Reservoir engineering</topic><topic>Reservoirs</topic><topic>Similarity</topic><topic>Soil Science & Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Insuasty, Edwin</creatorcontrib><creatorcontrib>Van den Hof, Paul M. J.</creatorcontrib><creatorcontrib>Weiland, Siep</creatorcontrib><creatorcontrib>Jansen, Jan-Dirk</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Insuasty, Edwin</au><au>Van den Hof, Paul M. J.</au><au>Weiland, Siep</au><au>Jansen, Jan-Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>645</spage><epage>663</epage><pages>645-663</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>In reservoir engineering, it is attractive to characterize the difference between reservoir models in metrics that relate to the economic performance of the reservoir as well as to the underlying geological structure. In this paper, we develop a dissimilarity measure that is based on reservoir flow patterns under a particular operational strategy. To this end, a spatial-temporal tensor representation of the reservoir flow patterns is used, while retaining the spatial structure of the flow variables. This allows reduced-order tensor representations of the dominating patterns and simple computation of a flow-induced dissimilarity measure between models. The developed tensor techniques are applied to cluster model realizations in an ensemble, based on similarity of flow characteristics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-017-9641-4</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2114-9739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2017-08, Vol.21 (4), p.645-663 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_journals_1918796332 |
source | Springer Nature - Complete Springer Journals |
subjects | Computation Earth and Environmental Science Earth Sciences Economic models Flow characteristics Flow pattern Geological structures Geotechnical Engineering & Applied Earth Sciences Hydrogeology Mathematical Modeling and Industrial Mathematics Model reduction Original Paper Representations Reservoir engineering Reservoirs Similarity Soil Science & Conservation |
title | Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow-based%20dissimilarity%20measures%20for%20reservoir%20models:%20a%20spatial-temporal%20tensor%20approach&rft.jtitle=Computational%20geosciences&rft.au=Insuasty,%20Edwin&rft.date=2017-08-01&rft.volume=21&rft.issue=4&rft.spage=645&rft.epage=663&rft.pages=645-663&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-017-9641-4&rft_dat=%3Cproquest_cross%3E1918796332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918796332&rft_id=info:pmid/&rfr_iscdi=true |