Primal–Dual Algorithms for Precedence Constrained Covering Problems
A covering problem is an integer linear program of type min { c T x ∣ A x ≥ D , 0 ≤ x ≤ d , x ∈ Z } where A ∈ Z + m × n , D ∈ Z + m , and c , d ∈ Z + n . In this paper, we study covering problems with additional precedence constraints { x i ≤ x j ∀ j ⪯ i ∈ P } , where P = ( [ n ] , ⪯ ) is some arbit...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2017-07, Vol.78 (3), p.771-787 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 787 |
---|---|
container_issue | 3 |
container_start_page | 771 |
container_title | Algorithmica |
container_volume | 78 |
creator | McCormick, S. Thomas Peis, Britta Verschae, José Wierz, Andreas |
description | A
covering problem
is an integer linear program of type
min
{
c
T
x
∣
A
x
≥
D
,
0
≤
x
≤
d
,
x
∈
Z
}
where
A
∈
Z
+
m
×
n
,
D
∈
Z
+
m
, and
c
,
d
∈
Z
+
n
. In this paper, we study covering problems with additional precedence constraints
{
x
i
≤
x
j
∀
j
⪯
i
∈
P
}
, where
P
=
(
[
n
]
,
⪯
)
is some arbitrary, but fixed partial order on the items represented by the column-indices of
A
. Such
precedence constrained covering problems
(
PCCPs
) are of high theoretical and practical importance even in the special case of the
precedence constrained knapsack problem
, that is, where
m
=
1
and
d
≡
1
. Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with
d
≡
1
. Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of
P
, that is, by the size of a maximum antichain in
P
. Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets
P
. For the general case with
d
≢
1
, we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions. |
doi_str_mv | 10.1007/s00453-016-0174-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1918611476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1918611476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvE2eCtXT-OVSkPqRI9wNlybKekSuNiJ0jc-Af-kC_BUThw4bDa1e7O7M4gdAnkGggRN4kQNqeYAM8hGKZHaAKMzjCZMzhGk9yUmHEQp-gspR0hMBOKT9BqE-u9ab4_v2570xSLZhti3b3uU1GFWGyit9751vpiGdrURVO33uX63ce63eZ5KBu_T-fopDJN8he_eYpe7lbPywe8frp_XC7W2FLgHZZ8ziormXJQSmadEt4Jn9-klANV0jqgoGRlmQFjS2l4VSoqiALDhGNAp-hq5D3E8Nb71Old6GObT2pQIDkAEzxvwbhlY0gp-kofBpHxQwPRg1t6dEtnt_TglqYZMxsx6TAo8_EP87-gHxN5bMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918611476</pqid></control><display><type>article</type><title>Primal–Dual Algorithms for Precedence Constrained Covering Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>McCormick, S. Thomas ; Peis, Britta ; Verschae, José ; Wierz, Andreas</creator><creatorcontrib>McCormick, S. Thomas ; Peis, Britta ; Verschae, José ; Wierz, Andreas</creatorcontrib><description>A
covering problem
is an integer linear program of type
min
{
c
T
x
∣
A
x
≥
D
,
0
≤
x
≤
d
,
x
∈
Z
}
where
A
∈
Z
+
m
×
n
,
D
∈
Z
+
m
, and
c
,
d
∈
Z
+
n
. In this paper, we study covering problems with additional precedence constraints
{
x
i
≤
x
j
∀
j
⪯
i
∈
P
}
, where
P
=
(
[
n
]
,
⪯
)
is some arbitrary, but fixed partial order on the items represented by the column-indices of
A
. Such
precedence constrained covering problems
(
PCCPs
) are of high theoretical and practical importance even in the special case of the
precedence constrained knapsack problem
, that is, where
m
=
1
and
d
≡
1
. Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with
d
≡
1
. Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of
P
, that is, by the size of a maximum antichain in
P
. Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets
P
. For the general case with
d
≢
1
, we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-016-0174-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Approximation ; Complexity ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Inequalities ; Job shops ; Knapsack problem ; Mathematical analysis ; Mathematics of Computing ; Precedence constraints ; Production scheduling ; Redundancy ; Set theory ; Theory of Computation</subject><ispartof>Algorithmica, 2017-07, Vol.78 (3), p.771-787</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</citedby><cites>FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-016-0174-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-016-0174-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>McCormick, S. Thomas</creatorcontrib><creatorcontrib>Peis, Britta</creatorcontrib><creatorcontrib>Verschae, José</creatorcontrib><creatorcontrib>Wierz, Andreas</creatorcontrib><title>Primal–Dual Algorithms for Precedence Constrained Covering Problems</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>A
covering problem
is an integer linear program of type
min
{
c
T
x
∣
A
x
≥
D
,
0
≤
x
≤
d
,
x
∈
Z
}
where
A
∈
Z
+
m
×
n
,
D
∈
Z
+
m
, and
c
,
d
∈
Z
+
n
. In this paper, we study covering problems with additional precedence constraints
{
x
i
≤
x
j
∀
j
⪯
i
∈
P
}
, where
P
=
(
[
n
]
,
⪯
)
is some arbitrary, but fixed partial order on the items represented by the column-indices of
A
. Such
precedence constrained covering problems
(
PCCPs
) are of high theoretical and practical importance even in the special case of the
precedence constrained knapsack problem
, that is, where
m
=
1
and
d
≡
1
. Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with
d
≡
1
. Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of
P
, that is, by the size of a maximum antichain in
P
. Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets
P
. For the general case with
d
≢
1
, we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Inequalities</subject><subject>Job shops</subject><subject>Knapsack problem</subject><subject>Mathematical analysis</subject><subject>Mathematics of Computing</subject><subject>Precedence constraints</subject><subject>Production scheduling</subject><subject>Redundancy</subject><subject>Set theory</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIvE2eCtXT-OVSkPqRI9wNlybKekSuNiJ0jc-Af-kC_BUThw4bDa1e7O7M4gdAnkGggRN4kQNqeYAM8hGKZHaAKMzjCZMzhGk9yUmHEQp-gspR0hMBOKT9BqE-u9ab4_v2570xSLZhti3b3uU1GFWGyit9751vpiGdrURVO33uX63ce63eZ5KBu_T-fopDJN8he_eYpe7lbPywe8frp_XC7W2FLgHZZ8ziormXJQSmadEt4Jn9-klANV0jqgoGRlmQFjS2l4VSoqiALDhGNAp-hq5D3E8Nb71Old6GObT2pQIDkAEzxvwbhlY0gp-kofBpHxQwPRg1t6dEtnt_TglqYZMxsx6TAo8_EP87-gHxN5bMk</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>McCormick, S. Thomas</creator><creator>Peis, Britta</creator><creator>Verschae, José</creator><creator>Wierz, Andreas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Primal–Dual Algorithms for Precedence Constrained Covering Problems</title><author>McCormick, S. Thomas ; Peis, Britta ; Verschae, José ; Wierz, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Inequalities</topic><topic>Job shops</topic><topic>Knapsack problem</topic><topic>Mathematical analysis</topic><topic>Mathematics of Computing</topic><topic>Precedence constraints</topic><topic>Production scheduling</topic><topic>Redundancy</topic><topic>Set theory</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCormick, S. Thomas</creatorcontrib><creatorcontrib>Peis, Britta</creatorcontrib><creatorcontrib>Verschae, José</creatorcontrib><creatorcontrib>Wierz, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCormick, S. Thomas</au><au>Peis, Britta</au><au>Verschae, José</au><au>Wierz, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primal–Dual Algorithms for Precedence Constrained Covering Problems</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>78</volume><issue>3</issue><spage>771</spage><epage>787</epage><pages>771-787</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A
covering problem
is an integer linear program of type
min
{
c
T
x
∣
A
x
≥
D
,
0
≤
x
≤
d
,
x
∈
Z
}
where
A
∈
Z
+
m
×
n
,
D
∈
Z
+
m
, and
c
,
d
∈
Z
+
n
. In this paper, we study covering problems with additional precedence constraints
{
x
i
≤
x
j
∀
j
⪯
i
∈
P
}
, where
P
=
(
[
n
]
,
⪯
)
is some arbitrary, but fixed partial order on the items represented by the column-indices of
A
. Such
precedence constrained covering problems
(
PCCPs
) are of high theoretical and practical importance even in the special case of the
precedence constrained knapsack problem
, that is, where
m
=
1
and
d
≡
1
. Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with
d
≡
1
. Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of
P
, that is, by the size of a maximum antichain in
P
. Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets
P
. For the general case with
d
≢
1
, we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-016-0174-3</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2017-07, Vol.78 (3), p.771-787 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_proquest_journals_1918611476 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithm Analysis and Problem Complexity Algorithms Approximation Complexity Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Inequalities Job shops Knapsack problem Mathematical analysis Mathematics of Computing Precedence constraints Production scheduling Redundancy Set theory Theory of Computation |
title | Primal–Dual Algorithms for Precedence Constrained Covering Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primal%E2%80%93Dual%20Algorithms%20for%20Precedence%20Constrained%20Covering%20Problems&rft.jtitle=Algorithmica&rft.au=McCormick,%20S.%20Thomas&rft.date=2017-07-01&rft.volume=78&rft.issue=3&rft.spage=771&rft.epage=787&rft.pages=771-787&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-016-0174-3&rft_dat=%3Cproquest_cross%3E1918611476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918611476&rft_id=info:pmid/&rfr_iscdi=true |