Primal–Dual Algorithms for Precedence Constrained Covering Problems

A covering problem is an integer linear program of type min { c T x ∣ A x ≥ D , 0 ≤ x ≤ d , x ∈ Z } where A ∈ Z + m × n , D ∈ Z + m , and c , d ∈ Z + n . In this paper, we study covering problems with additional precedence constraints { x i ≤ x j ∀ j ⪯ i ∈ P } , where P = ( [ n ] , ⪯ ) is some arbit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2017-07, Vol.78 (3), p.771-787
Hauptverfasser: McCormick, S. Thomas, Peis, Britta, Verschae, José, Wierz, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 3
container_start_page 771
container_title Algorithmica
container_volume 78
creator McCormick, S. Thomas
Peis, Britta
Verschae, José
Wierz, Andreas
description A covering problem is an integer linear program of type min { c T x ∣ A x ≥ D , 0 ≤ x ≤ d , x ∈ Z } where A ∈ Z + m × n , D ∈ Z + m , and c , d ∈ Z + n . In this paper, we study covering problems with additional precedence constraints { x i ≤ x j ∀ j ⪯ i ∈ P } , where P = ( [ n ] , ⪯ ) is some arbitrary, but fixed partial order on the items represented by the column-indices of A . Such precedence constrained covering problems ( PCCPs ) are of high theoretical and practical importance even in the special case of the precedence constrained knapsack problem , that is, where m = 1 and d ≡ 1 . Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with d ≡ 1 . Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of P , that is, by the size of a maximum antichain in P . Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets P . For the general case with d ≢ 1 , we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.
doi_str_mv 10.1007/s00453-016-0174-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1918611476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1918611476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvE2eCtXT-OVSkPqRI9wNlybKekSuNiJ0jc-Af-kC_BUThw4bDa1e7O7M4gdAnkGggRN4kQNqeYAM8hGKZHaAKMzjCZMzhGk9yUmHEQp-gspR0hMBOKT9BqE-u9ab4_v2570xSLZhti3b3uU1GFWGyit9751vpiGdrURVO33uX63ce63eZ5KBu_T-fopDJN8he_eYpe7lbPywe8frp_XC7W2FLgHZZ8ziormXJQSmadEt4Jn9-klANV0jqgoGRlmQFjS2l4VSoqiALDhGNAp-hq5D3E8Nb71Old6GObT2pQIDkAEzxvwbhlY0gp-kofBpHxQwPRg1t6dEtnt_TglqYZMxsx6TAo8_EP87-gHxN5bMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1918611476</pqid></control><display><type>article</type><title>Primal–Dual Algorithms for Precedence Constrained Covering Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>McCormick, S. Thomas ; Peis, Britta ; Verschae, José ; Wierz, Andreas</creator><creatorcontrib>McCormick, S. Thomas ; Peis, Britta ; Verschae, José ; Wierz, Andreas</creatorcontrib><description>A covering problem is an integer linear program of type min { c T x ∣ A x ≥ D , 0 ≤ x ≤ d , x ∈ Z } where A ∈ Z + m × n , D ∈ Z + m , and c , d ∈ Z + n . In this paper, we study covering problems with additional precedence constraints { x i ≤ x j ∀ j ⪯ i ∈ P } , where P = ( [ n ] , ⪯ ) is some arbitrary, but fixed partial order on the items represented by the column-indices of A . Such precedence constrained covering problems ( PCCPs ) are of high theoretical and practical importance even in the special case of the precedence constrained knapsack problem , that is, where m = 1 and d ≡ 1 . Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with d ≡ 1 . Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of P , that is, by the size of a maximum antichain in P . Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets P . For the general case with d ≢ 1 , we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-016-0174-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Approximation ; Complexity ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Inequalities ; Job shops ; Knapsack problem ; Mathematical analysis ; Mathematics of Computing ; Precedence constraints ; Production scheduling ; Redundancy ; Set theory ; Theory of Computation</subject><ispartof>Algorithmica, 2017-07, Vol.78 (3), p.771-787</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</citedby><cites>FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-016-0174-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-016-0174-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>McCormick, S. Thomas</creatorcontrib><creatorcontrib>Peis, Britta</creatorcontrib><creatorcontrib>Verschae, José</creatorcontrib><creatorcontrib>Wierz, Andreas</creatorcontrib><title>Primal–Dual Algorithms for Precedence Constrained Covering Problems</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>A covering problem is an integer linear program of type min { c T x ∣ A x ≥ D , 0 ≤ x ≤ d , x ∈ Z } where A ∈ Z + m × n , D ∈ Z + m , and c , d ∈ Z + n . In this paper, we study covering problems with additional precedence constraints { x i ≤ x j ∀ j ⪯ i ∈ P } , where P = ( [ n ] , ⪯ ) is some arbitrary, but fixed partial order on the items represented by the column-indices of A . Such precedence constrained covering problems ( PCCPs ) are of high theoretical and practical importance even in the special case of the precedence constrained knapsack problem , that is, where m = 1 and d ≡ 1 . Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with d ≡ 1 . Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of P , that is, by the size of a maximum antichain in P . Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets P . For the general case with d ≢ 1 , we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Inequalities</subject><subject>Job shops</subject><subject>Knapsack problem</subject><subject>Mathematical analysis</subject><subject>Mathematics of Computing</subject><subject>Precedence constraints</subject><subject>Production scheduling</subject><subject>Redundancy</subject><subject>Set theory</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIvE2eCtXT-OVSkPqRI9wNlybKekSuNiJ0jc-Af-kC_BUThw4bDa1e7O7M4gdAnkGggRN4kQNqeYAM8hGKZHaAKMzjCZMzhGk9yUmHEQp-gspR0hMBOKT9BqE-u9ab4_v2570xSLZhti3b3uU1GFWGyit9751vpiGdrURVO33uX63ce63eZ5KBu_T-fopDJN8he_eYpe7lbPywe8frp_XC7W2FLgHZZ8ziormXJQSmadEt4Jn9-klANV0jqgoGRlmQFjS2l4VSoqiALDhGNAp-hq5D3E8Nb71Old6GObT2pQIDkAEzxvwbhlY0gp-kofBpHxQwPRg1t6dEtnt_TglqYZMxsx6TAo8_EP87-gHxN5bMk</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>McCormick, S. Thomas</creator><creator>Peis, Britta</creator><creator>Verschae, José</creator><creator>Wierz, Andreas</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Primal–Dual Algorithms for Precedence Constrained Covering Problems</title><author>McCormick, S. Thomas ; Peis, Britta ; Verschae, José ; Wierz, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8654fc849d1b84cd97ed7e1433361398cd13198fc4a1acb8a6fb937091a47d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Inequalities</topic><topic>Job shops</topic><topic>Knapsack problem</topic><topic>Mathematical analysis</topic><topic>Mathematics of Computing</topic><topic>Precedence constraints</topic><topic>Production scheduling</topic><topic>Redundancy</topic><topic>Set theory</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCormick, S. Thomas</creatorcontrib><creatorcontrib>Peis, Britta</creatorcontrib><creatorcontrib>Verschae, José</creatorcontrib><creatorcontrib>Wierz, Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCormick, S. Thomas</au><au>Peis, Britta</au><au>Verschae, José</au><au>Wierz, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primal–Dual Algorithms for Precedence Constrained Covering Problems</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>78</volume><issue>3</issue><spage>771</spage><epage>787</epage><pages>771-787</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>A covering problem is an integer linear program of type min { c T x ∣ A x ≥ D , 0 ≤ x ≤ d , x ∈ Z } where A ∈ Z + m × n , D ∈ Z + m , and c , d ∈ Z + n . In this paper, we study covering problems with additional precedence constraints { x i ≤ x j ∀ j ⪯ i ∈ P } , where P = ( [ n ] , ⪯ ) is some arbitrary, but fixed partial order on the items represented by the column-indices of A . Such precedence constrained covering problems ( PCCPs ) are of high theoretical and practical importance even in the special case of the precedence constrained knapsack problem , that is, where m = 1 and d ≡ 1 . Our main result is a strongly-polynomial primal–dual approximation algorithm for PCCP with d ≡ 1 . Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of P , that is, by the size of a maximum antichain in P . Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets P . For the general case with d ≢ 1 , we present pseudo-polynomial algorithms. Finally, we show that the problem does not admit a PTAS under standard complexity assumptions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-016-0174-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2017-07, Vol.78 (3), p.771-787
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_1918611476
source SpringerLink Journals - AutoHoldings
subjects Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Inequalities
Job shops
Knapsack problem
Mathematical analysis
Mathematics of Computing
Precedence constraints
Production scheduling
Redundancy
Set theory
Theory of Computation
title Primal–Dual Algorithms for Precedence Constrained Covering Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primal%E2%80%93Dual%20Algorithms%20for%20Precedence%20Constrained%20Covering%20Problems&rft.jtitle=Algorithmica&rft.au=McCormick,%20S.%20Thomas&rft.date=2017-07-01&rft.volume=78&rft.issue=3&rft.spage=771&rft.epage=787&rft.pages=771-787&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-016-0174-3&rft_dat=%3Cproquest_cross%3E1918611476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1918611476&rft_id=info:pmid/&rfr_iscdi=true