Development of a Chinese opinion-mining system for application to Internet online forums

Articles posted on a forum often contain new Internet words related to opinion elements (feature words and opinion words). Consequently, existing Chinese opinion-mining systems may exhibit low recall and precision because they cannot recognize these new Internet words. Therefore, we propose a simple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2017-07, Vol.73 (7), p.2987-3001
Hauptverfasser: Wu, Shih-Jung, Chiang, Rui-Dong, Ji, Zheng-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3001
container_issue 7
container_start_page 2987
container_title The Journal of supercomputing
container_volume 73
creator Wu, Shih-Jung
Chiang, Rui-Dong
Ji, Zheng-Hong
description Articles posted on a forum often contain new Internet words related to opinion elements (feature words and opinion words). Consequently, existing Chinese opinion-mining systems may exhibit low recall and precision because they cannot recognize these new Internet words. Therefore, we propose a simple algorithm to elaborate on the opinion elements of such articles by extracting the opinion elements. Moreover, when an opinion word is combined with a specific word or concatenated with another opinion word, it may cause a change in the polarity or meaning of the opinion. This fact is prone to cause difficulties by changing the polarity or meaning of certain opinion elements, leading to errors in the analysis results of the Chinese system. We designed three algorithms with context dependency to address this problem. In this paper, we develop a semi-automatic Chinese opinion-mining system with these algorithms to extract these new opinion elements. Then, we determine whether the new word identified through manual judgment is a useful opinion element for a specific domain and add it to the thesaurus. In comparison with semi-automatic annotation methods, our approach can save considerable labor. After a 20-month follow-up analysis, the experimental data indicated that the precision, recall, and F 1 of the system reached 84.0, 89.4 %, and 0.865, respectively.
doi_str_mv 10.1007/s11227-016-1816-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917727513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917727513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-20da2a7d3950ca24d5fba0a0071c99a5b79fc006fea1bedd860f156c83614bae3</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvu7CRORlT-VarEAhKb5SR2SZXYwU6R-u1xFQYWlnvDvd873SPkGuEWAeRdRORcMsCCYZlGcUIWmEvBICuzU7KAigMr84yfk4sYdwCQCSkW5OPBfJvej4NxE_WWarr67JyJhvqxc513bEjitjQe4mQGan2gehz7rtFT2tLJ07WbTHAm4a5P6NGyH-IlObO6j-bqV5fk_enxbfXCNq_P69X9hjWiyCbGodVcy1ZUOTSaZ21uaw06vYRNVem8lpVtAAprNNambcsCLOZFU4oCs1obsSQ3c-4Y_NfexEnt_D64dFJhhVJymaNILpxdTfAxBmPVGLpBh4NCUMcC1VygSgWqY4GqSAyfmZi8bmvCn-R_oR_nN3RI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917727513</pqid></control><display><type>article</type><title>Development of a Chinese opinion-mining system for application to Internet online forums</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Shih-Jung ; Chiang, Rui-Dong ; Ji, Zheng-Hong</creator><creatorcontrib>Wu, Shih-Jung ; Chiang, Rui-Dong ; Ji, Zheng-Hong</creatorcontrib><description>Articles posted on a forum often contain new Internet words related to opinion elements (feature words and opinion words). Consequently, existing Chinese opinion-mining systems may exhibit low recall and precision because they cannot recognize these new Internet words. Therefore, we propose a simple algorithm to elaborate on the opinion elements of such articles by extracting the opinion elements. Moreover, when an opinion word is combined with a specific word or concatenated with another opinion word, it may cause a change in the polarity or meaning of the opinion. This fact is prone to cause difficulties by changing the polarity or meaning of certain opinion elements, leading to errors in the analysis results of the Chinese system. We designed three algorithms with context dependency to address this problem. In this paper, we develop a semi-automatic Chinese opinion-mining system with these algorithms to extract these new opinion elements. Then, we determine whether the new word identified through manual judgment is a useful opinion element for a specific domain and add it to the thesaurus. In comparison with semi-automatic annotation methods, our approach can save considerable labor. After a 20-month follow-up analysis, the experimental data indicated that the precision, recall, and F 1 of the system reached 84.0, 89.4 %, and 0.865, respectively.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-016-1816-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Computer Science ; Data mining ; Internet ; Interpreters ; Processor Architectures ; Programming Languages ; Recall ; Sentiment analysis ; Thesauri</subject><ispartof>The Journal of supercomputing, 2017-07, Vol.73 (7), p.2987-3001</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-20da2a7d3950ca24d5fba0a0071c99a5b79fc006fea1bedd860f156c83614bae3</citedby><cites>FETCH-LOGICAL-c364t-20da2a7d3950ca24d5fba0a0071c99a5b79fc006fea1bedd860f156c83614bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-016-1816-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-016-1816-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Shih-Jung</creatorcontrib><creatorcontrib>Chiang, Rui-Dong</creatorcontrib><creatorcontrib>Ji, Zheng-Hong</creatorcontrib><title>Development of a Chinese opinion-mining system for application to Internet online forums</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Articles posted on a forum often contain new Internet words related to opinion elements (feature words and opinion words). Consequently, existing Chinese opinion-mining systems may exhibit low recall and precision because they cannot recognize these new Internet words. Therefore, we propose a simple algorithm to elaborate on the opinion elements of such articles by extracting the opinion elements. Moreover, when an opinion word is combined with a specific word or concatenated with another opinion word, it may cause a change in the polarity or meaning of the opinion. This fact is prone to cause difficulties by changing the polarity or meaning of certain opinion elements, leading to errors in the analysis results of the Chinese system. We designed three algorithms with context dependency to address this problem. In this paper, we develop a semi-automatic Chinese opinion-mining system with these algorithms to extract these new opinion elements. Then, we determine whether the new word identified through manual judgment is a useful opinion element for a specific domain and add it to the thesaurus. In comparison with semi-automatic annotation methods, our approach can save considerable labor. After a 20-month follow-up analysis, the experimental data indicated that the precision, recall, and F 1 of the system reached 84.0, 89.4 %, and 0.865, respectively.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Data mining</subject><subject>Internet</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Recall</subject><subject>Sentiment analysis</subject><subject>Thesauri</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRvu7CRORlT-VarEAhKb5SR2SZXYwU6R-u1xFQYWlnvDvd873SPkGuEWAeRdRORcMsCCYZlGcUIWmEvBICuzU7KAigMr84yfk4sYdwCQCSkW5OPBfJvej4NxE_WWarr67JyJhvqxc513bEjitjQe4mQGan2gehz7rtFT2tLJ07WbTHAm4a5P6NGyH-IlObO6j-bqV5fk_enxbfXCNq_P69X9hjWiyCbGodVcy1ZUOTSaZ21uaw06vYRNVem8lpVtAAprNNambcsCLOZFU4oCs1obsSQ3c-4Y_NfexEnt_D64dFJhhVJymaNILpxdTfAxBmPVGLpBh4NCUMcC1VygSgWqY4GqSAyfmZi8bmvCn-R_oR_nN3RI</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Wu, Shih-Jung</creator><creator>Chiang, Rui-Dong</creator><creator>Ji, Zheng-Hong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Development of a Chinese opinion-mining system for application to Internet online forums</title><author>Wu, Shih-Jung ; Chiang, Rui-Dong ; Ji, Zheng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-20da2a7d3950ca24d5fba0a0071c99a5b79fc006fea1bedd860f156c83614bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Data mining</topic><topic>Internet</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Recall</topic><topic>Sentiment analysis</topic><topic>Thesauri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shih-Jung</creatorcontrib><creatorcontrib>Chiang, Rui-Dong</creatorcontrib><creatorcontrib>Ji, Zheng-Hong</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shih-Jung</au><au>Chiang, Rui-Dong</au><au>Ji, Zheng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Chinese opinion-mining system for application to Internet online forums</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>73</volume><issue>7</issue><spage>2987</spage><epage>3001</epage><pages>2987-3001</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Articles posted on a forum often contain new Internet words related to opinion elements (feature words and opinion words). Consequently, existing Chinese opinion-mining systems may exhibit low recall and precision because they cannot recognize these new Internet words. Therefore, we propose a simple algorithm to elaborate on the opinion elements of such articles by extracting the opinion elements. Moreover, when an opinion word is combined with a specific word or concatenated with another opinion word, it may cause a change in the polarity or meaning of the opinion. This fact is prone to cause difficulties by changing the polarity or meaning of certain opinion elements, leading to errors in the analysis results of the Chinese system. We designed three algorithms with context dependency to address this problem. In this paper, we develop a semi-automatic Chinese opinion-mining system with these algorithms to extract these new opinion elements. Then, we determine whether the new word identified through manual judgment is a useful opinion element for a specific domain and add it to the thesaurus. In comparison with semi-automatic annotation methods, our approach can save considerable labor. After a 20-month follow-up analysis, the experimental data indicated that the precision, recall, and F 1 of the system reached 84.0, 89.4 %, and 0.865, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-016-1816-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2017-07, Vol.73 (7), p.2987-3001
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_1917727513
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Compilers
Computer Science
Data mining
Internet
Interpreters
Processor Architectures
Programming Languages
Recall
Sentiment analysis
Thesauri
title Development of a Chinese opinion-mining system for application to Internet online forums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Chinese%20opinion-mining%20system%20for%20application%20to%20Internet%20online%20forums&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wu,%20Shih-Jung&rft.date=2017-07-01&rft.volume=73&rft.issue=7&rft.spage=2987&rft.epage=3001&rft.pages=2987-3001&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-016-1816-6&rft_dat=%3Cproquest_cross%3E1917727513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917727513&rft_id=info:pmid/&rfr_iscdi=true