A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes

Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-06, Vol.117, p.220-227
Hauptverfasser: Kim, Somin, Jang, Myungsu, Park, Minsuk, Park, No-Hyung, Ju, Sang-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue
container_start_page 220
container_title Carbon (New York)
container_volume 117
creator Kim, Somin
Jang, Myungsu
Park, Minsuk
Park, No-Hyung
Ju, Sang-Yong
description Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.02.098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917697263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317302282</els_id><sourcerecordid>1917697263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw8Bz61JmqbpRZDFLxC86DlM2qlm6TaaZFf335u1nj0Nw8y8874PIReclZxxdbUqOwjWT6VgvCmZKFmrD8iC66YqKt3yQ7JgjOlCCVEdk5MYV7mVmssFSTc04jgUECOu7Yg9HUbYuol-BJ-wS26LtPOQ3PRGcXqHqcNI0ztS_-16-B3nLqxhpDGBdaNLO-oHut6MyRVfMO4lZ3d0gsmnjcV4Ro4GGCOe_9VT8np3-7J8KJ6e7x-XN09FV1UyFRy4tYL37d6sRlC2aQGaWg5SMcUaEKqvtap0J23NW2QDattIlD2zfS14dUouZ90c5nODMZmV34QpvzS85Y1qG6GqvCXnrS74GAMO5iO4NYSd4czs-ZqVmROYPV_DhMl889n1fIY5wdZhMLFzmPn0LmRwpvfuf4EfjeKHdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917697263</pqid></control><display><type>article</type><title>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kim, Somin ; Jang, Myungsu ; Park, Minsuk ; Park, No-Hyung ; Ju, Sang-Yong</creator><creatorcontrib>Kim, Somin ; Jang, Myungsu ; Park, Minsuk ; Park, No-Hyung ; Ju, Sang-Yong</creatorcontrib><description>Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.02.098</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Activation energy ; Annealing ; Ball milling ; Covalence ; Defects ; Gravimetric analysis ; Heat transfer ; Multi wall carbon nanotubes ; Multi-walled carbon nanotube ; Nanotubes ; Oxidation resistance ; Oxygen ; Passivity ; Protective coatings ; Stability analysis ; Surface passivation ; Surface stability ; Thermal resistance ; Thermal stability ; Thermal stability enhancement ; Transmission electron microscopy</subject><ispartof>Carbon (New York), 2017-06, Vol.117, p.220-227</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</citedby><cites>FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</cites><orcidid>0000-0002-6939-5296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.02.098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kim, Somin</creatorcontrib><creatorcontrib>Jang, Myungsu</creatorcontrib><creatorcontrib>Park, Minsuk</creatorcontrib><creatorcontrib>Park, No-Hyung</creatorcontrib><creatorcontrib>Ju, Sang-Yong</creatorcontrib><title>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</title><title>Carbon (New York)</title><description>Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT. [Display omitted]</description><subject>Activation energy</subject><subject>Annealing</subject><subject>Ball milling</subject><subject>Covalence</subject><subject>Defects</subject><subject>Gravimetric analysis</subject><subject>Heat transfer</subject><subject>Multi wall carbon nanotubes</subject><subject>Multi-walled carbon nanotube</subject><subject>Nanotubes</subject><subject>Oxidation resistance</subject><subject>Oxygen</subject><subject>Passivity</subject><subject>Protective coatings</subject><subject>Stability analysis</subject><subject>Surface passivation</subject><subject>Surface stability</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Thermal stability enhancement</subject><subject>Transmission electron microscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw8Bz61JmqbpRZDFLxC86DlM2qlm6TaaZFf335u1nj0Nw8y8874PIReclZxxdbUqOwjWT6VgvCmZKFmrD8iC66YqKt3yQ7JgjOlCCVEdk5MYV7mVmssFSTc04jgUECOu7Yg9HUbYuol-BJ-wS26LtPOQ3PRGcXqHqcNI0ztS_-16-B3nLqxhpDGBdaNLO-oHut6MyRVfMO4lZ3d0gsmnjcV4Ro4GGCOe_9VT8np3-7J8KJ6e7x-XN09FV1UyFRy4tYL37d6sRlC2aQGaWg5SMcUaEKqvtap0J23NW2QDattIlD2zfS14dUouZ90c5nODMZmV34QpvzS85Y1qG6GqvCXnrS74GAMO5iO4NYSd4czs-ZqVmROYPV_DhMl889n1fIY5wdZhMLFzmPn0LmRwpvfuf4EfjeKHdQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Kim, Somin</creator><creator>Jang, Myungsu</creator><creator>Park, Minsuk</creator><creator>Park, No-Hyung</creator><creator>Ju, Sang-Yong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6939-5296</orcidid></search><sort><creationdate>201706</creationdate><title>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</title><author>Kim, Somin ; Jang, Myungsu ; Park, Minsuk ; Park, No-Hyung ; Ju, Sang-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Annealing</topic><topic>Ball milling</topic><topic>Covalence</topic><topic>Defects</topic><topic>Gravimetric analysis</topic><topic>Heat transfer</topic><topic>Multi wall carbon nanotubes</topic><topic>Multi-walled carbon nanotube</topic><topic>Nanotubes</topic><topic>Oxidation resistance</topic><topic>Oxygen</topic><topic>Passivity</topic><topic>Protective coatings</topic><topic>Stability analysis</topic><topic>Surface passivation</topic><topic>Surface stability</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Thermal stability enhancement</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Somin</creatorcontrib><creatorcontrib>Jang, Myungsu</creatorcontrib><creatorcontrib>Park, Minsuk</creatorcontrib><creatorcontrib>Park, No-Hyung</creatorcontrib><creatorcontrib>Ju, Sang-Yong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Somin</au><au>Jang, Myungsu</au><au>Park, Minsuk</au><au>Park, No-Hyung</au><au>Ju, Sang-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</atitle><jtitle>Carbon (New York)</jtitle><date>2017-06</date><risdate>2017</risdate><volume>117</volume><spage>220</spage><epage>227</epage><pages>220-227</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.02.098</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6939-5296</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-06, Vol.117, p.220-227
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1917697263
source Elsevier ScienceDirect Journals Complete
subjects Activation energy
Annealing
Ball milling
Covalence
Defects
Gravimetric analysis
Heat transfer
Multi wall carbon nanotubes
Multi-walled carbon nanotube
Nanotubes
Oxidation resistance
Oxygen
Passivity
Protective coatings
Stability analysis
Surface passivation
Surface stability
Thermal resistance
Thermal stability
Thermal stability enhancement
Transmission electron microscopy
title A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-assembled%20flavin%20protective%20coating%20enhances%20the%20oxidative%20thermal%20stability%20of%20multi-walled%20carbon%20nanotubes&rft.jtitle=Carbon%20(New%20York)&rft.au=Kim,%20Somin&rft.date=2017-06&rft.volume=117&rft.spage=220&rft.epage=227&rft.pages=220-227&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.02.098&rft_dat=%3Cproquest_cross%3E1917697263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917697263&rft_id=info:pmid/&rft_els_id=S0008622317302282&rfr_iscdi=true