A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes
Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2017-06, Vol.117, p.220-227 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | |
container_start_page | 220 |
container_title | Carbon (New York) |
container_volume | 117 |
creator | Kim, Somin Jang, Myungsu Park, Minsuk Park, No-Hyung Ju, Sang-Yong |
description | Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.02.098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917697263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317302282</els_id><sourcerecordid>1917697263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw8Bz61JmqbpRZDFLxC86DlM2qlm6TaaZFf335u1nj0Nw8y8874PIReclZxxdbUqOwjWT6VgvCmZKFmrD8iC66YqKt3yQ7JgjOlCCVEdk5MYV7mVmssFSTc04jgUECOu7Yg9HUbYuol-BJ-wS26LtPOQ3PRGcXqHqcNI0ztS_-16-B3nLqxhpDGBdaNLO-oHut6MyRVfMO4lZ3d0gsmnjcV4Ro4GGCOe_9VT8np3-7J8KJ6e7x-XN09FV1UyFRy4tYL37d6sRlC2aQGaWg5SMcUaEKqvtap0J23NW2QDattIlD2zfS14dUouZ90c5nODMZmV34QpvzS85Y1qG6GqvCXnrS74GAMO5iO4NYSd4czs-ZqVmROYPV_DhMl889n1fIY5wdZhMLFzmPn0LmRwpvfuf4EfjeKHdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917697263</pqid></control><display><type>article</type><title>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kim, Somin ; Jang, Myungsu ; Park, Minsuk ; Park, No-Hyung ; Ju, Sang-Yong</creator><creatorcontrib>Kim, Somin ; Jang, Myungsu ; Park, Minsuk ; Park, No-Hyung ; Ju, Sang-Yong</creatorcontrib><description>Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.02.098</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Activation energy ; Annealing ; Ball milling ; Covalence ; Defects ; Gravimetric analysis ; Heat transfer ; Multi wall carbon nanotubes ; Multi-walled carbon nanotube ; Nanotubes ; Oxidation resistance ; Oxygen ; Passivity ; Protective coatings ; Stability analysis ; Surface passivation ; Surface stability ; Thermal resistance ; Thermal stability ; Thermal stability enhancement ; Transmission electron microscopy</subject><ispartof>Carbon (New York), 2017-06, Vol.117, p.220-227</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</citedby><cites>FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</cites><orcidid>0000-0002-6939-5296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.02.098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kim, Somin</creatorcontrib><creatorcontrib>Jang, Myungsu</creatorcontrib><creatorcontrib>Park, Minsuk</creatorcontrib><creatorcontrib>Park, No-Hyung</creatorcontrib><creatorcontrib>Ju, Sang-Yong</creatorcontrib><title>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</title><title>Carbon (New York)</title><description>Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT.
[Display omitted]</description><subject>Activation energy</subject><subject>Annealing</subject><subject>Ball milling</subject><subject>Covalence</subject><subject>Defects</subject><subject>Gravimetric analysis</subject><subject>Heat transfer</subject><subject>Multi wall carbon nanotubes</subject><subject>Multi-walled carbon nanotube</subject><subject>Nanotubes</subject><subject>Oxidation resistance</subject><subject>Oxygen</subject><subject>Passivity</subject><subject>Protective coatings</subject><subject>Stability analysis</subject><subject>Surface passivation</subject><subject>Surface stability</subject><subject>Thermal resistance</subject><subject>Thermal stability</subject><subject>Thermal stability enhancement</subject><subject>Transmission electron microscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw8Bz61JmqbpRZDFLxC86DlM2qlm6TaaZFf335u1nj0Nw8y8874PIReclZxxdbUqOwjWT6VgvCmZKFmrD8iC66YqKt3yQ7JgjOlCCVEdk5MYV7mVmssFSTc04jgUECOu7Yg9HUbYuol-BJ-wS26LtPOQ3PRGcXqHqcNI0ztS_-16-B3nLqxhpDGBdaNLO-oHut6MyRVfMO4lZ3d0gsmnjcV4Ro4GGCOe_9VT8np3-7J8KJ6e7x-XN09FV1UyFRy4tYL37d6sRlC2aQGaWg5SMcUaEKqvtap0J23NW2QDattIlD2zfS14dUouZ90c5nODMZmV34QpvzS85Y1qG6GqvCXnrS74GAMO5iO4NYSd4czs-ZqVmROYPV_DhMl889n1fIY5wdZhMLFzmPn0LmRwpvfuf4EfjeKHdQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Kim, Somin</creator><creator>Jang, Myungsu</creator><creator>Park, Minsuk</creator><creator>Park, No-Hyung</creator><creator>Ju, Sang-Yong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6939-5296</orcidid></search><sort><creationdate>201706</creationdate><title>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</title><author>Kim, Somin ; Jang, Myungsu ; Park, Minsuk ; Park, No-Hyung ; Ju, Sang-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1a1bb21d900488ea6b79aa754f460607a26d58638c4b519e0fe8b74e4d0bd5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Annealing</topic><topic>Ball milling</topic><topic>Covalence</topic><topic>Defects</topic><topic>Gravimetric analysis</topic><topic>Heat transfer</topic><topic>Multi wall carbon nanotubes</topic><topic>Multi-walled carbon nanotube</topic><topic>Nanotubes</topic><topic>Oxidation resistance</topic><topic>Oxygen</topic><topic>Passivity</topic><topic>Protective coatings</topic><topic>Stability analysis</topic><topic>Surface passivation</topic><topic>Surface stability</topic><topic>Thermal resistance</topic><topic>Thermal stability</topic><topic>Thermal stability enhancement</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Somin</creatorcontrib><creatorcontrib>Jang, Myungsu</creatorcontrib><creatorcontrib>Park, Minsuk</creatorcontrib><creatorcontrib>Park, No-Hyung</creatorcontrib><creatorcontrib>Ju, Sang-Yong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Somin</au><au>Jang, Myungsu</au><au>Park, Minsuk</au><au>Park, No-Hyung</au><au>Ju, Sang-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes</atitle><jtitle>Carbon (New York)</jtitle><date>2017-06</date><risdate>2017</risdate><volume>117</volume><spage>220</spage><epage>227</epage><pages>220-227</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Multi-walled carbon nanotube (MWNT) has many commercial applications. However, its broad use is limited by the surface-bound oxygen lowering its thermal stability. Here, we developed a facile method to enhance the oxidative thermal resistance of MWNTs that involves molecular coating promoted surface passivation. In the approach, ball milling is employed to self assemble flavin mononucleotide (FMN) helically around MWNTs through non-covalent interactions with no increased defects in MWNT. Upon high temperature oxidation, the ribityl phosphate side chain of FMN in the nanoconstruct undergoes partial decomposition to generate a corresponding isoalloxazine derivative on the surface of the MWNTs. Transmission electron microscopy reveals that the oxidatively annealed material is comprised of a tight isoalloxazine coating stacked on the sidewalls of the MWNT. The results of thermal gravimetric analysis studies show that the coating further elevates long-term stability and the energy barrier for oxidation of the MWNT by 28 kJ/mol from 113 kJ/mol for the bare MWNT. The role of the isoalloxazine coating is proposed to be surface passivation from molecular oxygen. As a consequence of the passivation, the maximum oxidative temperature of the MWNT is raised to 938 K as compared to that of 843 K for bare MWNT.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.02.098</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6939-5296</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2017-06, Vol.117, p.220-227 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_1917697263 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Activation energy Annealing Ball milling Covalence Defects Gravimetric analysis Heat transfer Multi wall carbon nanotubes Multi-walled carbon nanotube Nanotubes Oxidation resistance Oxygen Passivity Protective coatings Stability analysis Surface passivation Surface stability Thermal resistance Thermal stability Thermal stability enhancement Transmission electron microscopy |
title | A self-assembled flavin protective coating enhances the oxidative thermal stability of multi-walled carbon nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-assembled%20flavin%20protective%20coating%20enhances%20the%20oxidative%20thermal%20stability%20of%20multi-walled%20carbon%20nanotubes&rft.jtitle=Carbon%20(New%20York)&rft.au=Kim,%20Somin&rft.date=2017-06&rft.volume=117&rft.spage=220&rft.epage=227&rft.pages=220-227&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.02.098&rft_dat=%3Cproquest_cross%3E1917697263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917697263&rft_id=info:pmid/&rft_els_id=S0008622317302282&rfr_iscdi=true |