Chemistry of graphene oxide. Reactions with transition metal cations

The main advantage of graphene oxide (GO) over its non-oxidized counterpart, is its ability to form stable solutions, due to exfoliation to single-atomic-layer sheets. At present day, the fine chemical structure of GO remains ambiguous, while the traditional characterization methods have exhausted t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2017-05, Vol.116, p.356-365
Hauptverfasser: Amirov, Rustem R., Shayimova, Julia, Nasirova, Zarina, Dimiev, Ayrat M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue
container_start_page 356
container_title Carbon (New York)
container_volume 116
creator Amirov, Rustem R.
Shayimova, Julia
Nasirova, Zarina
Dimiev, Ayrat M.
description The main advantage of graphene oxide (GO) over its non-oxidized counterpart, is its ability to form stable solutions, due to exfoliation to single-atomic-layer sheets. At present day, the fine chemical structure of GO remains ambiguous, while the traditional characterization methods have exhausted their potentials in revealing GO chemistry. Here we employ the NMR relaxation method to monitor reactions between GO and the three transition metal cations Mn2+, Gd3+ and Fe3+ while in solution phase. We demonstrate that interaction between GO and metal cations is chemical in its nature. The GO functional groups serve as ligands replacing water molecules from the metal cations’ first coordination sphere. The functional groups interacting at different pH values have been identified and quantified. At least part of the functional groups interacting with metal cations in neutral and basic solutions are alcohols that have acidic character. The metal ion induced rearrangement of the oxygen functional groups on GO platform points at the highly dynamic nature of GO, confirming the main standing points of our earlier proposed Dynamic Structural Model. For Fe3+, the polynuclear complexes with hydroxide ion bridges form on the surface of GO; the process of the seeding the nanoparticles on GO surface is recorded. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.01.095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917695684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317301100</els_id><sourcerecordid>1917695684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-33de0858bdaca64cfc1fe635db7eb702c4d46847af1994f19ba4cd4b1d2e36ae3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEPA866ZTfbrIkj9BEEQPYdsMmuztJuapGr_vanr2csM8_G-wzyEnAPLgUF1OeRa-c6NecGgzhnkrC0PyAyamme8aeGQzBhjTVYVBT8mJyEMqRQNiBm5WSxxbUP0O-p6-u7VZokjUvdtDeb0BZWO1o2Bftm4pNGrMdh9g64xqhXV6nd6So56tQp49pfn5O3u9nXxkD093z8urp8yzWuIGecGWVM2nVFaVUL3GnqseGm6GruaFVoYUTWiVj20rUihU0Ib0YEpkFcK-ZxcTL4b7z62GKIc3NaP6aSEFuqqLZM8bYlpS3sXgsdebrxdK7-TwOSelxzkxEvueUkGMvFKsqtJhumDT4teBm1x1GisRx2lcfZ_gx-e2HaF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917695684</pqid></control><display><type>article</type><title>Chemistry of graphene oxide. Reactions with transition metal cations</title><source>Elsevier ScienceDirect Journals</source><creator>Amirov, Rustem R. ; Shayimova, Julia ; Nasirova, Zarina ; Dimiev, Ayrat M.</creator><creatorcontrib>Amirov, Rustem R. ; Shayimova, Julia ; Nasirova, Zarina ; Dimiev, Ayrat M.</creatorcontrib><description>The main advantage of graphene oxide (GO) over its non-oxidized counterpart, is its ability to form stable solutions, due to exfoliation to single-atomic-layer sheets. At present day, the fine chemical structure of GO remains ambiguous, while the traditional characterization methods have exhausted their potentials in revealing GO chemistry. Here we employ the NMR relaxation method to monitor reactions between GO and the three transition metal cations Mn2+, Gd3+ and Fe3+ while in solution phase. We demonstrate that interaction between GO and metal cations is chemical in its nature. The GO functional groups serve as ligands replacing water molecules from the metal cations’ first coordination sphere. The functional groups interacting at different pH values have been identified and quantified. At least part of the functional groups interacting with metal cations in neutral and basic solutions are alcohols that have acidic character. The metal ion induced rearrangement of the oxygen functional groups on GO platform points at the highly dynamic nature of GO, confirming the main standing points of our earlier proposed Dynamic Structural Model. For Fe3+, the polynuclear complexes with hydroxide ion bridges form on the surface of GO; the process of the seeding the nanoparticles on GO surface is recorded. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.01.095</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Alcohols ; Atomic structure ; Cations ; Exfoliation ; Functional groups ; Graphene ; Ions ; Ligands ; NMR ; Nuclear magnetic resonance ; Phase transitions ; Relaxation method (mathematics) ; Sheets ; Water chemistry</subject><ispartof>Carbon (New York), 2017-05, Vol.116, p.356-365</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-33de0858bdaca64cfc1fe635db7eb702c4d46847af1994f19ba4cd4b1d2e36ae3</citedby><cites>FETCH-LOGICAL-c371t-33de0858bdaca64cfc1fe635db7eb702c4d46847af1994f19ba4cd4b1d2e36ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317301100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Amirov, Rustem R.</creatorcontrib><creatorcontrib>Shayimova, Julia</creatorcontrib><creatorcontrib>Nasirova, Zarina</creatorcontrib><creatorcontrib>Dimiev, Ayrat M.</creatorcontrib><title>Chemistry of graphene oxide. Reactions with transition metal cations</title><title>Carbon (New York)</title><description>The main advantage of graphene oxide (GO) over its non-oxidized counterpart, is its ability to form stable solutions, due to exfoliation to single-atomic-layer sheets. At present day, the fine chemical structure of GO remains ambiguous, while the traditional characterization methods have exhausted their potentials in revealing GO chemistry. Here we employ the NMR relaxation method to monitor reactions between GO and the three transition metal cations Mn2+, Gd3+ and Fe3+ while in solution phase. We demonstrate that interaction between GO and metal cations is chemical in its nature. The GO functional groups serve as ligands replacing water molecules from the metal cations’ first coordination sphere. The functional groups interacting at different pH values have been identified and quantified. At least part of the functional groups interacting with metal cations in neutral and basic solutions are alcohols that have acidic character. The metal ion induced rearrangement of the oxygen functional groups on GO platform points at the highly dynamic nature of GO, confirming the main standing points of our earlier proposed Dynamic Structural Model. For Fe3+, the polynuclear complexes with hydroxide ion bridges form on the surface of GO; the process of the seeding the nanoparticles on GO surface is recorded. [Display omitted]</description><subject>Alcohols</subject><subject>Atomic structure</subject><subject>Cations</subject><subject>Exfoliation</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>Ions</subject><subject>Ligands</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phase transitions</subject><subject>Relaxation method (mathematics)</subject><subject>Sheets</subject><subject>Water chemistry</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEPA866ZTfbrIkj9BEEQPYdsMmuztJuapGr_vanr2csM8_G-wzyEnAPLgUF1OeRa-c6NecGgzhnkrC0PyAyamme8aeGQzBhjTVYVBT8mJyEMqRQNiBm5WSxxbUP0O-p6-u7VZokjUvdtDeb0BZWO1o2Bftm4pNGrMdh9g64xqhXV6nd6So56tQp49pfn5O3u9nXxkD093z8urp8yzWuIGecGWVM2nVFaVUL3GnqseGm6GruaFVoYUTWiVj20rUihU0Ib0YEpkFcK-ZxcTL4b7z62GKIc3NaP6aSEFuqqLZM8bYlpS3sXgsdebrxdK7-TwOSelxzkxEvueUkGMvFKsqtJhumDT4teBm1x1GisRx2lcfZ_gx-e2HaF</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Amirov, Rustem R.</creator><creator>Shayimova, Julia</creator><creator>Nasirova, Zarina</creator><creator>Dimiev, Ayrat M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170501</creationdate><title>Chemistry of graphene oxide. Reactions with transition metal cations</title><author>Amirov, Rustem R. ; Shayimova, Julia ; Nasirova, Zarina ; Dimiev, Ayrat M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-33de0858bdaca64cfc1fe635db7eb702c4d46847af1994f19ba4cd4b1d2e36ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alcohols</topic><topic>Atomic structure</topic><topic>Cations</topic><topic>Exfoliation</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>Ions</topic><topic>Ligands</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phase transitions</topic><topic>Relaxation method (mathematics)</topic><topic>Sheets</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amirov, Rustem R.</creatorcontrib><creatorcontrib>Shayimova, Julia</creatorcontrib><creatorcontrib>Nasirova, Zarina</creatorcontrib><creatorcontrib>Dimiev, Ayrat M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amirov, Rustem R.</au><au>Shayimova, Julia</au><au>Nasirova, Zarina</au><au>Dimiev, Ayrat M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry of graphene oxide. Reactions with transition metal cations</atitle><jtitle>Carbon (New York)</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>116</volume><spage>356</spage><epage>365</epage><pages>356-365</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The main advantage of graphene oxide (GO) over its non-oxidized counterpart, is its ability to form stable solutions, due to exfoliation to single-atomic-layer sheets. At present day, the fine chemical structure of GO remains ambiguous, while the traditional characterization methods have exhausted their potentials in revealing GO chemistry. Here we employ the NMR relaxation method to monitor reactions between GO and the three transition metal cations Mn2+, Gd3+ and Fe3+ while in solution phase. We demonstrate that interaction between GO and metal cations is chemical in its nature. The GO functional groups serve as ligands replacing water molecules from the metal cations’ first coordination sphere. The functional groups interacting at different pH values have been identified and quantified. At least part of the functional groups interacting with metal cations in neutral and basic solutions are alcohols that have acidic character. The metal ion induced rearrangement of the oxygen functional groups on GO platform points at the highly dynamic nature of GO, confirming the main standing points of our earlier proposed Dynamic Structural Model. For Fe3+, the polynuclear complexes with hydroxide ion bridges form on the surface of GO; the process of the seeding the nanoparticles on GO surface is recorded. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.01.095</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-05, Vol.116, p.356-365
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1917695684
source Elsevier ScienceDirect Journals
subjects Alcohols
Atomic structure
Cations
Exfoliation
Functional groups
Graphene
Ions
Ligands
NMR
Nuclear magnetic resonance
Phase transitions
Relaxation method (mathematics)
Sheets
Water chemistry
title Chemistry of graphene oxide. Reactions with transition metal cations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry%20of%20graphene%20oxide.%20Reactions%20with%20transition%20metal%20cations&rft.jtitle=Carbon%20(New%20York)&rft.au=Amirov,%20Rustem%20R.&rft.date=2017-05-01&rft.volume=116&rft.spage=356&rft.epage=365&rft.pages=356-365&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.01.095&rft_dat=%3Cproquest_cross%3E1917695684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917695684&rft_id=info:pmid/&rft_els_id=S0008622317301100&rfr_iscdi=true