Thin film nanocarbon composites for supercapacitor applications
Porous nanocarbon and carbon-multi walled carbon nanotubes (MWCNT)-nanocomposite films are processed on stainless steel collectors for high performance supercapacitor applications. The processing of these films starts with a solution-based fabrication of porous polyvinylidene fluoride (PVDF) or poro...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2017-05, Vol.115, p.449-459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | |
container_start_page | 449 |
container_title | Carbon (New York) |
container_volume | 115 |
creator | Schopf, Dimitri Es-Souni, Mohammed |
description | Porous nanocarbon and carbon-multi walled carbon nanotubes (MWCNT)-nanocomposite films are processed on stainless steel collectors for high performance supercapacitor applications. The processing of these films starts with a solution-based fabrication of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on the collector, followed by pyrolysis under nitrogen atmosphere at the moderate temperature of 550 °C. The resulting films replicate the porous structure of the parent films yielding a range of hierarchical pore sizes. The surface properties and chemistry of the films are tuned via surface modification with single walled CNT (SWCNT) and Ni(OH)2-Nanoparticles using a novel method that is based on reactions taking place at the interface between the substrate and a Leidenfrost layer. The electrochemical properties of the different film structures are characterized in 1 M KOH aqueous electrolyte and in ethylene glycol based electrolytes. Single electrodes (three-electrode setup) with outstanding specific capacitance values of up to 689 F g−1 (597 mF cm−2) are obtained. Supercapacitors in ethylene glycol based electrolytes deliver energy densities of up to 10.2 Wh kg−1 and power densities of up to 5 kW kg−1 with a potential working range of 2 V. In all cases, long-term charge-discharge stability is demonstrated.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.01.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917653785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317300374</els_id><sourcerecordid>1917653785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b89a9ff361d6d25a6b4d67486a87b128d36df20b9743ae67f7b8463bedf081043</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxcF1625TZqkG0XEFwy4GdchzQNTZpKadAT_vRnq2tXlwDnncj6ErgE3gIHdjo1WaYihaTHwBkODW36CViA4qYno4RStMMaiZm1LztFFzmORVABdofvtpw-V87t9FVSIS0-l436K2c82Vy6mKh8mm7SalPZzkWqadl6r2ceQL9GZU7tsr_7uGn08P20fX-vN-8vb48Om1oR3cz2IXvXOEQaGmbZTbKCGcSqYEnyAVhjCjGvx0HNKlGXc8UFQRgZrHBaAKVmjm6V3SvHrYPMsx3hIobyU0ANnHeGiKy66uHSKOSfr5JT8XqUfCVgeUclRLhPlEZXEIAuqErtbYrYs-PY2yay9Ddoan6yepYn-_4JfuDp0AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917653785</pqid></control><display><type>article</type><title>Thin film nanocarbon composites for supercapacitor applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schopf, Dimitri ; Es-Souni, Mohammed</creator><creatorcontrib>Schopf, Dimitri ; Es-Souni, Mohammed</creatorcontrib><description>Porous nanocarbon and carbon-multi walled carbon nanotubes (MWCNT)-nanocomposite films are processed on stainless steel collectors for high performance supercapacitor applications. The processing of these films starts with a solution-based fabrication of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on the collector, followed by pyrolysis under nitrogen atmosphere at the moderate temperature of 550 °C. The resulting films replicate the porous structure of the parent films yielding a range of hierarchical pore sizes. The surface properties and chemistry of the films are tuned via surface modification with single walled CNT (SWCNT) and Ni(OH)2-Nanoparticles using a novel method that is based on reactions taking place at the interface between the substrate and a Leidenfrost layer. The electrochemical properties of the different film structures are characterized in 1 M KOH aqueous electrolyte and in ethylene glycol based electrolytes. Single electrodes (three-electrode setup) with outstanding specific capacitance values of up to 689 F g−1 (597 mF cm−2) are obtained. Supercapacitors in ethylene glycol based electrolytes deliver energy densities of up to 10.2 Wh kg−1 and power densities of up to 5 kW kg−1 with a potential working range of 2 V. In all cases, long-term charge-discharge stability is demonstrated.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.01.027</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Accumulators ; Aqueous electrolytes ; Capacitance ; Chemical industry ; Collectors ; Discharge ; Electrochemical analysis ; Electrodes ; Electrolytes ; Ethylene glycol ; Multi wall carbon nanotubes ; Nanocomposites ; Polyvinylidene fluorides ; Pyrolysis ; Single wall carbon nanotubes ; Structural steels ; Supercapacitors ; Surface properties</subject><ispartof>Carbon (New York), 2017-05, Vol.115, p.449-459</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b89a9ff361d6d25a6b4d67486a87b128d36df20b9743ae67f7b8463bedf081043</citedby><cites>FETCH-LOGICAL-c375t-b89a9ff361d6d25a6b4d67486a87b128d36df20b9743ae67f7b8463bedf081043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2017.01.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Schopf, Dimitri</creatorcontrib><creatorcontrib>Es-Souni, Mohammed</creatorcontrib><title>Thin film nanocarbon composites for supercapacitor applications</title><title>Carbon (New York)</title><description>Porous nanocarbon and carbon-multi walled carbon nanotubes (MWCNT)-nanocomposite films are processed on stainless steel collectors for high performance supercapacitor applications. The processing of these films starts with a solution-based fabrication of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on the collector, followed by pyrolysis under nitrogen atmosphere at the moderate temperature of 550 °C. The resulting films replicate the porous structure of the parent films yielding a range of hierarchical pore sizes. The surface properties and chemistry of the films are tuned via surface modification with single walled CNT (SWCNT) and Ni(OH)2-Nanoparticles using a novel method that is based on reactions taking place at the interface between the substrate and a Leidenfrost layer. The electrochemical properties of the different film structures are characterized in 1 M KOH aqueous electrolyte and in ethylene glycol based electrolytes. Single electrodes (three-electrode setup) with outstanding specific capacitance values of up to 689 F g−1 (597 mF cm−2) are obtained. Supercapacitors in ethylene glycol based electrolytes deliver energy densities of up to 10.2 Wh kg−1 and power densities of up to 5 kW kg−1 with a potential working range of 2 V. In all cases, long-term charge-discharge stability is demonstrated.
[Display omitted]</description><subject>Accumulators</subject><subject>Aqueous electrolytes</subject><subject>Capacitance</subject><subject>Chemical industry</subject><subject>Collectors</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Ethylene glycol</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Polyvinylidene fluorides</subject><subject>Pyrolysis</subject><subject>Single wall carbon nanotubes</subject><subject>Structural steels</subject><subject>Supercapacitors</subject><subject>Surface properties</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxcF1625TZqkG0XEFwy4GdchzQNTZpKadAT_vRnq2tXlwDnncj6ErgE3gIHdjo1WaYihaTHwBkODW36CViA4qYno4RStMMaiZm1LztFFzmORVABdofvtpw-V87t9FVSIS0-l436K2c82Vy6mKh8mm7SalPZzkWqadl6r2ceQL9GZU7tsr_7uGn08P20fX-vN-8vb48Om1oR3cz2IXvXOEQaGmbZTbKCGcSqYEnyAVhjCjGvx0HNKlGXc8UFQRgZrHBaAKVmjm6V3SvHrYPMsx3hIobyU0ANnHeGiKy66uHSKOSfr5JT8XqUfCVgeUclRLhPlEZXEIAuqErtbYrYs-PY2yay9Ddoan6yepYn-_4JfuDp0AA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Schopf, Dimitri</creator><creator>Es-Souni, Mohammed</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20170501</creationdate><title>Thin film nanocarbon composites for supercapacitor applications</title><author>Schopf, Dimitri ; Es-Souni, Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b89a9ff361d6d25a6b4d67486a87b128d36df20b9743ae67f7b8463bedf081043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulators</topic><topic>Aqueous electrolytes</topic><topic>Capacitance</topic><topic>Chemical industry</topic><topic>Collectors</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Ethylene glycol</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Polyvinylidene fluorides</topic><topic>Pyrolysis</topic><topic>Single wall carbon nanotubes</topic><topic>Structural steels</topic><topic>Supercapacitors</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schopf, Dimitri</creatorcontrib><creatorcontrib>Es-Souni, Mohammed</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schopf, Dimitri</au><au>Es-Souni, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin film nanocarbon composites for supercapacitor applications</atitle><jtitle>Carbon (New York)</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>115</volume><spage>449</spage><epage>459</epage><pages>449-459</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Porous nanocarbon and carbon-multi walled carbon nanotubes (MWCNT)-nanocomposite films are processed on stainless steel collectors for high performance supercapacitor applications. The processing of these films starts with a solution-based fabrication of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on the collector, followed by pyrolysis under nitrogen atmosphere at the moderate temperature of 550 °C. The resulting films replicate the porous structure of the parent films yielding a range of hierarchical pore sizes. The surface properties and chemistry of the films are tuned via surface modification with single walled CNT (SWCNT) and Ni(OH)2-Nanoparticles using a novel method that is based on reactions taking place at the interface between the substrate and a Leidenfrost layer. The electrochemical properties of the different film structures are characterized in 1 M KOH aqueous electrolyte and in ethylene glycol based electrolytes. Single electrodes (three-electrode setup) with outstanding specific capacitance values of up to 689 F g−1 (597 mF cm−2) are obtained. Supercapacitors in ethylene glycol based electrolytes deliver energy densities of up to 10.2 Wh kg−1 and power densities of up to 5 kW kg−1 with a potential working range of 2 V. In all cases, long-term charge-discharge stability is demonstrated.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.01.027</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2017-05, Vol.115, p.449-459 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_1917653785 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Accumulators Aqueous electrolytes Capacitance Chemical industry Collectors Discharge Electrochemical analysis Electrodes Electrolytes Ethylene glycol Multi wall carbon nanotubes Nanocomposites Polyvinylidene fluorides Pyrolysis Single wall carbon nanotubes Structural steels Supercapacitors Surface properties |
title | Thin film nanocarbon composites for supercapacitor applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin%20film%20nanocarbon%20composites%20for%20supercapacitor%20applications&rft.jtitle=Carbon%20(New%20York)&rft.au=Schopf,%20Dimitri&rft.date=2017-05-01&rft.volume=115&rft.spage=449&rft.epage=459&rft.pages=449-459&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.01.027&rft_dat=%3Cproquest_cross%3E1917653785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917653785&rft_id=info:pmid/&rft_els_id=S0008622317300374&rfr_iscdi=true |