Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites

In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-lengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2017-08, Vol.231 (5), p.443-462
Hauptverfasser: Grujicic, M, Snipes, JS, Galgalikar, R, Yavari, R, Avuthu, V, Ramaswami, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 5
container_start_page 443
container_title Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications
container_volume 231
creator Grujicic, M
Snipes, JS
Galgalikar, R
Yavari, R
Avuthu, V
Ramaswami, S
description In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.
doi_str_mv 10.1177/1464420715600002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917088877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420715600002</sage_id><sourcerecordid>1917088877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</originalsourceid><addsrcrecordid>eNp1kMtLAzEQxoMoWKt3jwHPsZPsI9mjFF9Q8aCelzSPNmW3WZNs1f_elHoQwYFhYOb3fQMfQpcUrinlfEbLuiwZcFrVkIsdoQmDkpICeH2MJvsz2d9P0VmMm0xQDnyCPp7GLjnSme0qrUlUsjNYm-B2Mjm_xd7itDY4eN-TZPrBBJnGYHAvU4Zkh5XfxuTSmNwub702HbY-4Bc3n-XGKgt6p0jmg_vMdD_46JKJ5-jEyi6ai585RW93t6_zB7J4vn-c3yyIKqBJpCq1kJWyTAMUnOnKFpWAktlaWsG0bKzhCqCmBS-llkywSi4b2thaC1BLXUzR1cF3CP59NDG1Gz-GbX7Z0iZHIITgPFNwoFTwMQZj2yG4XoavlkK7j7f9G2-WkIMkypX5Zfof_w1xaXuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917088877</pqid></control><display><type>article</type><title>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</title><source>SAGE Complete A-Z List</source><creator>Grujicic, M ; Snipes, JS ; Galgalikar, R ; Yavari, R ; Avuthu, V ; Ramaswami, S</creator><creatorcontrib>Grujicic, M ; Snipes, JS ; Galgalikar, R ; Yavari, R ; Avuthu, V ; Ramaswami, S</creatorcontrib><description>In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420715600002</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Ceramic matrix composites ; Ceramics ; Cohesion ; Concentration (composition) ; Damage assessment ; Derivation ; Engine components ; Filaments ; Finite element method ; Folding ; Gas turbine engines ; Laminates ; Layers ; Materials science ; Mathematical models ; Matrix materials ; Mechanical analysis ; Mechanical tests ; Parameter identification ; Room temperature ; Scale (ratio) ; Silicon carbide ; Structural damage ; Weaving ; Weibull distribution</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2017-08, Vol.231 (5), p.443-462</ispartof><rights>IMechE 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</citedby><cites>FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420715600002$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420715600002$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Grujicic, M</creatorcontrib><creatorcontrib>Snipes, JS</creatorcontrib><creatorcontrib>Galgalikar, R</creatorcontrib><creatorcontrib>Yavari, R</creatorcontrib><creatorcontrib>Avuthu, V</creatorcontrib><creatorcontrib>Ramaswami, S</creatorcontrib><title>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.</description><subject>Ceramic matrix composites</subject><subject>Ceramics</subject><subject>Cohesion</subject><subject>Concentration (composition)</subject><subject>Damage assessment</subject><subject>Derivation</subject><subject>Engine components</subject><subject>Filaments</subject><subject>Finite element method</subject><subject>Folding</subject><subject>Gas turbine engines</subject><subject>Laminates</subject><subject>Layers</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Matrix materials</subject><subject>Mechanical analysis</subject><subject>Mechanical tests</subject><subject>Parameter identification</subject><subject>Room temperature</subject><subject>Scale (ratio)</subject><subject>Silicon carbide</subject><subject>Structural damage</subject><subject>Weaving</subject><subject>Weibull distribution</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQxoMoWKt3jwHPsZPsI9mjFF9Q8aCelzSPNmW3WZNs1f_elHoQwYFhYOb3fQMfQpcUrinlfEbLuiwZcFrVkIsdoQmDkpICeH2MJvsz2d9P0VmMm0xQDnyCPp7GLjnSme0qrUlUsjNYm-B2Mjm_xd7itDY4eN-TZPrBBJnGYHAvU4Zkh5XfxuTSmNwub702HbY-4Bc3n-XGKgt6p0jmg_vMdD_46JKJ5-jEyi6ai585RW93t6_zB7J4vn-c3yyIKqBJpCq1kJWyTAMUnOnKFpWAktlaWsG0bKzhCqCmBS-llkywSi4b2thaC1BLXUzR1cF3CP59NDG1Gz-GbX7Z0iZHIITgPFNwoFTwMQZj2yG4XoavlkK7j7f9G2-WkIMkypX5Zfof_w1xaXuQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Grujicic, M</creator><creator>Snipes, JS</creator><creator>Galgalikar, R</creator><creator>Yavari, R</creator><creator>Avuthu, V</creator><creator>Ramaswami, S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201708</creationdate><title>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</title><author>Grujicic, M ; Snipes, JS ; Galgalikar, R ; Yavari, R ; Avuthu, V ; Ramaswami, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ceramic matrix composites</topic><topic>Ceramics</topic><topic>Cohesion</topic><topic>Concentration (composition)</topic><topic>Damage assessment</topic><topic>Derivation</topic><topic>Engine components</topic><topic>Filaments</topic><topic>Finite element method</topic><topic>Folding</topic><topic>Gas turbine engines</topic><topic>Laminates</topic><topic>Layers</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Matrix materials</topic><topic>Mechanical analysis</topic><topic>Mechanical tests</topic><topic>Parameter identification</topic><topic>Room temperature</topic><topic>Scale (ratio)</topic><topic>Silicon carbide</topic><topic>Structural damage</topic><topic>Weaving</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grujicic, M</creatorcontrib><creatorcontrib>Snipes, JS</creatorcontrib><creatorcontrib>Galgalikar, R</creatorcontrib><creatorcontrib>Yavari, R</creatorcontrib><creatorcontrib>Avuthu, V</creatorcontrib><creatorcontrib>Ramaswami, S</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujicic, M</au><au>Snipes, JS</au><au>Galgalikar, R</au><au>Yavari, R</au><au>Avuthu, V</au><au>Ramaswami, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2017-08</date><risdate>2017</risdate><volume>231</volume><issue>5</issue><spage>443</spage><epage>462</epage><pages>443-462</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420715600002</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1464-4207
ispartof Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2017-08, Vol.231 (5), p.443-462
issn 1464-4207
2041-3076
language eng
recordid cdi_proquest_journals_1917088877
source SAGE Complete A-Z List
subjects Ceramic matrix composites
Ceramics
Cohesion
Concentration (composition)
Damage assessment
Derivation
Engine components
Filaments
Finite element method
Folding
Gas turbine engines
Laminates
Layers
Materials science
Mathematical models
Matrix materials
Mechanical analysis
Mechanical tests
Parameter identification
Room temperature
Scale (ratio)
Silicon carbide
Structural damage
Weaving
Weibull distribution
title Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-length-scale%20derivation%20of%20the%20room-temperature%20material%20constitutive%20model%20for%20SiC/SiC%20ceramic-matrix%20composites&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Grujicic,%20M&rft.date=2017-08&rft.volume=231&rft.issue=5&rft.spage=443&rft.epage=462&rft.pages=443-462&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420715600002&rft_dat=%3Cproquest_cross%3E1917088877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917088877&rft_id=info:pmid/&rft_sage_id=10.1177_1464420715600002&rfr_iscdi=true