Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites
In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-lengt...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2017-08, Vol.231 (5), p.443-462 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 5 |
container_start_page | 443 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications |
container_volume | 231 |
creator | Grujicic, M Snipes, JS Galgalikar, R Yavari, R Avuthu, V Ramaswami, S |
description | In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components. |
doi_str_mv | 10.1177/1464420715600002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917088877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420715600002</sage_id><sourcerecordid>1917088877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</originalsourceid><addsrcrecordid>eNp1kMtLAzEQxoMoWKt3jwHPsZPsI9mjFF9Q8aCelzSPNmW3WZNs1f_elHoQwYFhYOb3fQMfQpcUrinlfEbLuiwZcFrVkIsdoQmDkpICeH2MJvsz2d9P0VmMm0xQDnyCPp7GLjnSme0qrUlUsjNYm-B2Mjm_xd7itDY4eN-TZPrBBJnGYHAvU4Zkh5XfxuTSmNwub702HbY-4Bc3n-XGKgt6p0jmg_vMdD_46JKJ5-jEyi6ai585RW93t6_zB7J4vn-c3yyIKqBJpCq1kJWyTAMUnOnKFpWAktlaWsG0bKzhCqCmBS-llkywSi4b2thaC1BLXUzR1cF3CP59NDG1Gz-GbX7Z0iZHIITgPFNwoFTwMQZj2yG4XoavlkK7j7f9G2-WkIMkypX5Zfof_w1xaXuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917088877</pqid></control><display><type>article</type><title>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</title><source>SAGE Complete A-Z List</source><creator>Grujicic, M ; Snipes, JS ; Galgalikar, R ; Yavari, R ; Avuthu, V ; Ramaswami, S</creator><creatorcontrib>Grujicic, M ; Snipes, JS ; Galgalikar, R ; Yavari, R ; Avuthu, V ; Ramaswami, S</creatorcontrib><description>In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420715600002</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Ceramic matrix composites ; Ceramics ; Cohesion ; Concentration (composition) ; Damage assessment ; Derivation ; Engine components ; Filaments ; Finite element method ; Folding ; Gas turbine engines ; Laminates ; Layers ; Materials science ; Mathematical models ; Matrix materials ; Mechanical analysis ; Mechanical tests ; Parameter identification ; Room temperature ; Scale (ratio) ; Silicon carbide ; Structural damage ; Weaving ; Weibull distribution</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2017-08, Vol.231 (5), p.443-462</ispartof><rights>IMechE 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</citedby><cites>FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420715600002$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420715600002$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Grujicic, M</creatorcontrib><creatorcontrib>Snipes, JS</creatorcontrib><creatorcontrib>Galgalikar, R</creatorcontrib><creatorcontrib>Yavari, R</creatorcontrib><creatorcontrib>Avuthu, V</creatorcontrib><creatorcontrib>Ramaswami, S</creatorcontrib><title>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.</description><subject>Ceramic matrix composites</subject><subject>Ceramics</subject><subject>Cohesion</subject><subject>Concentration (composition)</subject><subject>Damage assessment</subject><subject>Derivation</subject><subject>Engine components</subject><subject>Filaments</subject><subject>Finite element method</subject><subject>Folding</subject><subject>Gas turbine engines</subject><subject>Laminates</subject><subject>Layers</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Matrix materials</subject><subject>Mechanical analysis</subject><subject>Mechanical tests</subject><subject>Parameter identification</subject><subject>Room temperature</subject><subject>Scale (ratio)</subject><subject>Silicon carbide</subject><subject>Structural damage</subject><subject>Weaving</subject><subject>Weibull distribution</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQxoMoWKt3jwHPsZPsI9mjFF9Q8aCelzSPNmW3WZNs1f_elHoQwYFhYOb3fQMfQpcUrinlfEbLuiwZcFrVkIsdoQmDkpICeH2MJvsz2d9P0VmMm0xQDnyCPp7GLjnSme0qrUlUsjNYm-B2Mjm_xd7itDY4eN-TZPrBBJnGYHAvU4Zkh5XfxuTSmNwub702HbY-4Bc3n-XGKgt6p0jmg_vMdD_46JKJ5-jEyi6ai585RW93t6_zB7J4vn-c3yyIKqBJpCq1kJWyTAMUnOnKFpWAktlaWsG0bKzhCqCmBS-llkywSi4b2thaC1BLXUzR1cF3CP59NDG1Gz-GbX7Z0iZHIITgPFNwoFTwMQZj2yG4XoavlkK7j7f9G2-WkIMkypX5Zfof_w1xaXuQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Grujicic, M</creator><creator>Snipes, JS</creator><creator>Galgalikar, R</creator><creator>Yavari, R</creator><creator>Avuthu, V</creator><creator>Ramaswami, S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201708</creationdate><title>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</title><author>Grujicic, M ; Snipes, JS ; Galgalikar, R ; Yavari, R ; Avuthu, V ; Ramaswami, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-54d8a5cf2d00372d5f358042f6af82da9fe7c0061374ada2825ab919f6d80cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ceramic matrix composites</topic><topic>Ceramics</topic><topic>Cohesion</topic><topic>Concentration (composition)</topic><topic>Damage assessment</topic><topic>Derivation</topic><topic>Engine components</topic><topic>Filaments</topic><topic>Finite element method</topic><topic>Folding</topic><topic>Gas turbine engines</topic><topic>Laminates</topic><topic>Layers</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Matrix materials</topic><topic>Mechanical analysis</topic><topic>Mechanical tests</topic><topic>Parameter identification</topic><topic>Room temperature</topic><topic>Scale (ratio)</topic><topic>Silicon carbide</topic><topic>Structural damage</topic><topic>Weaving</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grujicic, M</creatorcontrib><creatorcontrib>Snipes, JS</creatorcontrib><creatorcontrib>Galgalikar, R</creatorcontrib><creatorcontrib>Yavari, R</creatorcontrib><creatorcontrib>Avuthu, V</creatorcontrib><creatorcontrib>Ramaswami, S</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujicic, M</au><au>Snipes, JS</au><au>Galgalikar, R</au><au>Yavari, R</au><au>Avuthu, V</au><au>Ramaswami, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2017-08</date><risdate>2017</risdate><volume>231</volume><issue>5</issue><spage>443</spage><epage>462</epage><pages>443-462</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>In the present work, multi-length-scale physical and numerical analyses are used to derive a SiC/SiC ceramic matrix composite (CMC) material model suitable for use in a general room-temperature, finite element-based, structural/damage analysis of gas turbine engine components. Due to its multi-length-scale character, the material model incorporates the effects of fiber/tow (e.g. the volume fraction of the filaments, thickness of the filament coatings, decohesion properties of the coating/matrix interfaces, quality, as quantified by the Weibull distribution parameters, of the filament, coating, and matrix materials, etc.) and ply/lamina (e.g. the 0°/90° cross-ply vs. plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. To identify and quantify the contribution of the aforementioned parameters on the material response, detailed numerical procedures involving the representative volume elements and the virtual mechanical tests are developed and utilized. The resulting homogenized turbine-engine component-level material model is next integrated into a user-material subroutine and used, in conjunction with a commercial finite element program, to analyze the foreign object damage experienced by a toboggan-shaped turbine shroud segment. The results obtained clearly revealed the role different fiber/tow and ply/lamina microstructural parameters play in the structural/damage response of the gas-turbine CMC components.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420715600002</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4207 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2017-08, Vol.231 (5), p.443-462 |
issn | 1464-4207 2041-3076 |
language | eng |
recordid | cdi_proquest_journals_1917088877 |
source | SAGE Complete A-Z List |
subjects | Ceramic matrix composites Ceramics Cohesion Concentration (composition) Damage assessment Derivation Engine components Filaments Finite element method Folding Gas turbine engines Laminates Layers Materials science Mathematical models Matrix materials Mechanical analysis Mechanical tests Parameter identification Room temperature Scale (ratio) Silicon carbide Structural damage Weaving Weibull distribution |
title | Multi-length-scale derivation of the room-temperature material constitutive model for SiC/SiC ceramic-matrix composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-length-scale%20derivation%20of%20the%20room-temperature%20material%20constitutive%20model%20for%20SiC/SiC%20ceramic-matrix%20composites&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Grujicic,%20M&rft.date=2017-08&rft.volume=231&rft.issue=5&rft.spage=443&rft.epage=462&rft.pages=443-462&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420715600002&rft_dat=%3Cproquest_cross%3E1917088877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917088877&rft_id=info:pmid/&rft_sage_id=10.1177_1464420715600002&rfr_iscdi=true |